170 likes | 373 Views
ALPs (Axion-like Particles). Talk at the Cosmophysics Group Seminar 2008.1.31. CP Problem in QCD. Vacuum of the SU(3) gauge fields Gauge potential: Vacuum configurations: Winding number: U( 1 )=1 のとき,真空は 3 (SU(3))=Z で分類され,指標として winding number q 真 空
E N D
ALPs (Axion-like Particles) Talk at the Cosmophysics Group Seminar 2008.1.31
CP Problem in QCD • Vacuum of the SU(3) gauge fields • Gauge potential: • Vacuum configurations: • Winding number: U(1)=1のとき,真空は3(SU(3))=Zで分類され,指標としてwinding number • q真空 • 巻き付き数の変化は,4次元的なゲージ場配位に対するPontrjagin数により決まる: • 固有状態は次の重ね合わせで与えられる: • 各q真空での有効Lagrangianは • この付加項はCPを破り,中性子に電気双極子モーメントを与える. Cf. 観測の制限: || < 10-9
Peccei-Quinn Mechanism • Chiral anomaly • Chiral charge: Q5= s d3x (L* L – R* R)= NL-NR • Chiral anomaly • Q5’=Q5-2Nf n が保存 ) Q5=2Nf • No fermion )=0 ) no CP violation • Peccei-Quinn symmetry • Lagrangian LY= -h(R** L + cc)はchiral変換 L ! eiL, R! eiR, ! e2i に対して,不変. • 対称性の自発的破れh0i=veiに対し,LY=-hv(ei dR* dL + cc). 質量を実数とするため,位相をchiral変換で消すと,anomalyのため !’=+ Nf. • インスタントン効果で,’はポテンシャルを獲得: V=-V0 cos’ )が力学的な場なら,自動的にCP対称性が回復 = v ’ ) V= (1/2) ma22 Peccei RD, Quinn HR: PRL38:1440 (1977); PRD16:1791 (1977) Weinberg S: PRL40:223 (1978); Wilczek F: PRL40:279 (1978)
Axion-Photon Coupling • Lagrangian • Coupling constant where • fa: the PQ symmetry breaking scale • z=mu/md (0.3-0.6), w=mu/ms (¼ 0.028) • E/N: the model dependent ratio of the EM and color anomalies of the axial current associated with the axion field. • KSVZ model(Kim-Shifman-Vainshtein-Zakharov) E/N=0 • DFSZ model(Dine-Fischler-Srednicki-Zhitnitskii) E/N=8/3 • Mass where m=135 MeV, f¼ 92 MeV (the pion decay constant). Hence, the coupling constant and the mass are related as
Bounds on Mass and Coupling • Cosmology bound • Astrophysics bound • Horizontal branch stars in globular clusters ga < 10-10 GeV-1
Experimental Searches: Project Overview • Cavity search (Sikivie P 1983) • Helioscope method (Sikivie P 1983) • CAST experiment • Bragg scattering method (Paschos EA, Zioutas K1994) • SOLAX experiment • COSME experiment • Resonant method (Krcmar M, Krecak Z, Stipcevic M, Ljubicic A, Bradley DA 1998) • Polarisation of light in B (Mainai L, Petronzio R, Zavattini E 1986) • PLVAS experiment • Photo regeneration method (Cameron R et al 1993) • BERT Collaborations • 1990s no detection • HERA • VUV-FEL • PVLAS • Indication of the axion-photon mixing with ma' 1.3meV, ga' 3£10-6 GeV-1 [Zavattini E et al, PRL96:110406(2006)] • この結果を否定 [Zavattini E et al: arXive:0706.3419] • French group • No detection ) M>8£ 105 GeV for ma» 1 meV [Robilliard C et al; PRL99:190403 (2007)] • ALPS@DESY (Axion-Like Particle Search project) • LIPSS@Jefferson Laboratory (Light PseudoScalar Search project) • BMV project • OSQAR@CERN (Optical Search for Qed vacuum magnetic birefringence, Axions and photon Regeneration project) • GVPSE@Fermilab (GammeV Particle Search Experiment project)
CAST experiment • 概要 • Primakoff効果により太陽中心で生成されたアクシオンを磁気望遠鏡 (9.26m£ 2¢ 14.5cm2 LHC双極磁石)により光子に変換して検出. • CAST Coll: First Results from the CERN Axion Solar Telescpe, PRL94:121301 (2005) • Zioutas K et al: A decommissioned LHC model magnet as an axion telescope, Nucl. Instrum. Methods Phys. Res. A425:480 (1999) [astro-ph/9801176] • 結果 • Cast Phase I: ma <0.02 eV • ga<1.16 £10-10 GeV-1 [ CAST Coll: PRL94:121301 (2005)] • ga<8.8 £10-11 GeV-1 (95%CL) [CAST Coll: JCAP 04:010 (2007)] • Cast Phase II: ma < 1eV
Primakoff Effect • Conversion rate where s is the screening scale given by • Total axion number flux at the Earth • Estimation • Axion flux: a=g102 3.75£1011 cm-2 s-1 • Axion luminosity: La= g102 1.85£ 10-3 L⊙ • Average energy: h Ei =4.2 keV, h E2i=22.7 keV2 Raffelt GG: Plasmon decay into low mass bosons in stars, PRD37:1356 (1988)
MSW効果 • 媒質との相互作用効果 • 真空中 • 媒質との相互作用 • 有効質量 • 有効混合角
Resonant transition • 臨界密度 • レベル遷移条件 • 断熱遷移条件 • 条件 が満たされるとき,n>ne,cで放出された eは100% 他のニュートリノに変換される. • この条件が満たされないときは,次の確率でeにとどまる.
-a Conversion by Magnetic Fields • Propagation equation where with pl2=4 ne/me being the plasma frequency, and R and CM represents the Faraday rotation effect and the vacuum Cotton-Mouton effect, respectively. • Non-resonant conversion For homogeneous magnetic fields, where For a random sequence of N coherent domains [Grossman Y, Roy S, Zupan J: PLB543:23(2002)] • Resonant conversion
Spectral Deformation of Cosmic -rays by Galactic and Intergalactic Magnetic Fields • Photon-ALP conversion rate where • Estimations Can be observed by GLAST(10% deformation) and E*=102 GeV » 1 TeV if ma¼ 10-6»10-8eV at the CAST bound on ga and • Intergalactic fields: Ldom» 1Mpc, B=(1-5)¢ 10-9G for D=200» 500 Mpc • Intracluster fields: Ldom» 10kpc, B=10-6G, ne' 10-3 cm-3 for D= 1Mpc • Galactic fields: Ldom» 10kpc, B=(2-4)¢10-6G, ne' 10-3 cm-3 for D= 1Mpc De Angelis A, Mansutti O, Roncadelli M: arXiv:0707.2695 [astro-ph]
Deformation of AGN spectrum • Resonant transition • Under the conditions • If the observed energy range satisfies • the resonant conversion occurs in the range • Non-resonant transition • Under the conditions • The non-resonant conversion occurs in the range
Candidates • For a site where CRs are accelerated up to Ecr • From this, the half of the non-resonant conversion conditions are satisified if The energy range of modification are • These conditions are Markarian 421, Markarian 501, blazar 1ES 1101-232, the variable core and flaring knots of M87. • For d» 10-3 pc, g11»1, m eV» 1, the conversion occurs at GeV energies
AGN central engines • Resonant conversion Under the conditions The resonant conversion occurs in the energy range • Non-resonant conversion Under the condtions the non-resonant conversion occurs in the energy range
AGN jets and hot-spots • For g11>0.1, » 1pc, ne < 105 cm-3, B» 1G, M» 109 M⊙, the non-resonant conversion can occur in jets. • Resonant conversions can occur only for ma < 1.2£ 10-8 eV. M=109 M⊙, B=0.5G over 200pc, =10-3 pc, g11=1, ma=1 eV. Hochmuth KA, Sigl G: arXiv:0708.1144
References • Books • Raffelt GG: Stars as Laboratories for Fundamental Physics (UCP, 1996) • Khlopov My: Cosmoparticle physics (WS, 1999) • Reviews • Kim JH: Phys. Rep. 150:1 (1987) • Cheng HY: Phys. Rep. 158:1 (1988) • Raffelt GG: Phys. Rep. 198:1 (1990)