310 likes | 488 Views
SPL Fréjus. J-E Campagne Linear Accelerator Laboratory – Orsay – France Thanks: A. Cazes, M. Mezzetto, Th. Schwetz and the GLoBES team and AM Lombardi, R. Garoby. CERN SPL. LSM-Fréjus. Near detector. 130km. TRE. A possible schema. Related talks.
E N D
SPLFréjus J-E Campagne Linear Accelerator Laboratory – Orsay – France Thanks: A. Cazes, M. Mezzetto, Th. Schwetz and the GLoBES team and AM Lombardi, R. Garoby
CERN SPL LSM-Fréjus Near detector 130km TRE A possible schema Related talks + BetaBeam: see M. Mezzetto + ATM n: see Th. Schwetz Machines R. Garoby & M. Lindroos
2.2GeV SPL block diagram (CDR 1) Characteristics (Conceptual Design Report 1): • are “optimized” for a neutrino factory • assume the use of LEP cavities & klystrons up to the highest energy
Gradients at 700 MHz from Stephane Chel, HIPPI04, Frankfurt, sep04 • Last test performed in CryHoLab (July 04): • 5-cells 700 MHz ß=0.65 Nb cavity A5-01 • from CEA/Saclay and IPN-Orsay LEP cavities may have worked 350MHz & 3.6MV/m effective gradient NuFact Note 040
p p n p New optimization questioned @ MMW04* • Particle production • Horn design optimisation • Decay tunnel parameter optimisation • Flux computation at Fréjus • q13and dCP sensitivity. LAL – 04-102 submitted to EPJC *: Multi MegaWatt Workshop at CERN 26-28 May 04
Particle production • Proton beam : • Pencil like • Ek=2.2GeV, 3.5GeV… • Target : • 30cm long cylinder, 15mm in Liq. Hg • FLUKA 2002.4 • Normalized to a power of 4MW: • 1.14 1023 pot/yr @ 2.2GeV • 0.71 1023 pot/yr @ 3.5GeV
nFact Super Beam px/pz px/pz ½ rad 20 mrad x x 2 m 30cm Decay channel solenoids Aperture and B strength Spot size @ 130km Decay tunnel size SuperBeam vs nFact Optics Thanks S. Gilardoni
at the exit of the target 2 105 pot SB Horn optimisation by S. Gilardoni nFact This new optimisation p+ p (2.2GeV) Hg Pion production Rule of thumb: Ep/3~ En(GeV)2.L(km)
p+ K+ p- Not physical dip !!! Not Used… K0 K- 2.2 3.5 Ep(GeV) Ep(GeV) Kaon production? see BENE meeting 11/09/03 For 500 000 pot • at 2.2GeV : • 0.26 p+/s • 0.8 10-3 K+/s • at 4.5GeV : • 0.32 p+/s • 5.2 10-3 K+/s • at 3.5GeV : • 0.29 p+/s • 2.8 10-3 K+/s
80 cm 140 cm 220 cm Horn design parameter Conductor thickness : 3mm horn : 300kAmps reflector : 600kAmps Challenging!!! Drawing from the horn built at CERN Optimized for Super Beam En~300MeV Ep~800MeV + or - focusing Using Geant 3.2.1 NuFact-Note 138
Length modify purity L=10m, 20m, 40m and 60m have been tested. 10m40m nm , nm + 50% to 70% ne , ne + 50% to 100% 40m60m nm , nm + 5% ne , ne+ 20% 40m seems better Radius modify acceptance R=1m, 1.5m and 2m have been Tested 1m 2m (L=40) nm , nm +50% ne , ne +50% to 70% Larger is better (2m)… Decay Tunnel Parameters This results have been checked on sensitivity to q13 and dCP
<En> ~ 300 MeV, 1.2 1014/100m2/yr 3.5GeV SPL optimum <En> ~ 275MeV, 4.5 1013/100m2/yr Old nFact optimum Fluxes comparison @ 130km ~95 nmCC/kT/yr* <En> ~ 245 MeV, 7.5 1013/100m2/yr 2.2GeV SPL optimum *: Lipari x-sect. (see later)
x1/140 x1/3000 x1/17 Flux @ 130km: + focusing http://opera.web.lal.in2p3.fr/horn/Simu/index.htm nm ne p+ m+ 3.5GeV Kinetic p beam ~800MeVp focusing 40m decay tunnel length 2m decay tunnel radius ne nm ~1/2 m- ~1/2 K0e3 p-
nmSPL The X-sections ---: Lipari et al. on H20 bB is an ideal tool to measure these cross-sections and a 2% systematic error on both signal and background are used.
Analysis: GLoBES + M. Mezzetto’s parameterization file 440kT x 5yrs: 2,2 Mt.yrs (+) sin22q12=0.82, q23=p/4, Dm221=8.1 10-5eV2, Dm231=2.2 10-3eV2 Reduction factor and efficiencies taken from SK simulation (D. Casper) and a tight cut for e/m misId. (cf. hep-ph/0105297)
440kT x 8yrs: 3,5 Mt.yrs (-) sin22q12=0.82, q23=p/4, Dm221=8.1 10-5eV2, Dm231=2.2 10-3eV2
dCP=0 90%CL New Opt. Old Opt. preliminary Some physics performances 440kT water Č, 4MW SPL, opti. Fluxes 5yrs (+) True values: (Dm23, sin22q13) sin22q12=0.82, q23=p/4, Dm221=8.1 10-5eV2 5% external precision on q12andDm221 and use SPL disappearance channel and spectrum analysis* 2% syst. on signal & bkg Sin22q13(90%CL) = 610-3 (0.7°) sizeable improvement *: 5 bins [0.08,1.08] GeV (2(2dof)=4.6 or 11.83)
Rate only 2yrs (+) 8yrs (-) 2yrs (+) 8yrs (-) Spectrum analysis (prelim.) T2K-I Old SPL x10 5yrs (+) preliminary preliminary 90%CL (2(2dof)=4.6) Some physics performances True values: dCP=0, q13=0, sin22q12=0.82, q23=p/4, Dm221=8.1 10-5, Dm231=2.2 10-3 5% external precision on q12andDm221 and use SPL disappearance channel Improve T2K-I 2% syst. on signal & bkg
CP discovery @ 3s Old Opti. New Opti. 2yrs (+) 8yrs (-) preliminary Some physics performances True values (dCP,q) Tests dCP=0 and dCP=p sin22q12=0.82, q23=p/4, Dm221=8.1 10-5, Dm231=2.2 10-3 5% external precision on q12andDm221 use SPL disappearance channel 2% syst on signal & bkg Use glbChiDelta and 2 (1dof)=9
0.5 0.5 New Prelim. NNN05 Solid: SPL+ATM Dashed: SPL only 0 0 “nFact opt.” “ 3.5 GeV opt.” d/p Wrong hierarchy and q23 d/p Wrong hierarchy -0.5 -0.5 Wrong q23 true -1 -1 90%CL 0.02 0.02 0.04 0.04 0.06 0.06 sin22q13 sin22q13 Evolution of the performances 2yrs (+), 8 yrs (-) True values: dCP/p =-0.85, sin22q13=0.03, sin2q23=0.4, 5% external precison on Dm221=8.1 10-5, Dm231=2.2 10-3, q23 cf. Th. Schwetz
CDR2 block diagrams CERN proton complex 1-2GeV Eurisol, bB 2-3.5GeV SuperB, NuFact
Global planning (R.G courtesy) RF tests in SM 18 of prototype structures* for Linac4 3 MeV test place ready Linac4 approval SPL approval CDR 2
Summary • Higher proton energy & SB Horn specific • new baseline: 3.5GeV/2m/40m • q13sensitivity: • sensitivity to q13 = 0.7° (5yrs +): gain +25% wrt old result • down to q13 = 1.4° with the 10yrs mixed scenario independently of dCP • Improve T2K-I by a factor 10 at dCP = 0 (5yrs +) • Can discover CP violation • Can solve ambiguities alone and result is improved thanks to ATMn(Th. Schwetz ‘s talk) • Complementary to BetaBeam to cross check the background and improve dCP sensitivity(M. Mezzetto’s talk) Thank you
q13 and dCPSensitivity computation • Use GLoBES v2.0.11 and M. Mezzetto SPL.glb file • detector: • Water Cerenkov • 440 kt • at Fréjus (130 km from CERN) • Run: • 5 years p+ • 1 year p+ + 4 years p- • 2 years p+ + 8 years p- • Computed with dCP=0 (standard benchmark) and q13 = 0 • other parameters… • Dm23 = 2.5 10-3eV2 • Dm12 = 7.1 10-5eV2 Same duration Same statistics • sin22q23 = 1.0 • sin22q12 = 0.82
Flux @ 130km: - focusing 1/3 m+ 1/3 K0e3 1/3 K+e3 p+ nm ne 3.5GeV Kinetic p beam ~800MeVp focusing 40m decay tunnel length 2m decay tunnel radius x1/1300 x1/10 x1/200 p- m- ne nm
Focusing comparison Dm223 (eV2) Dm223 (eV2) En~260MeV 10-3 10-3 dCP = 0 dCP = 0 sin22q13 sin22q13 10-3 10-3 tunnel : 40m long 2m radius Ek = 4.5GeV En=300MeV Best sin22q13 > 7.1 10-4 5 years positive focusing Energy comparison
300MeV 4.5GeV 300MeV 3.5GeV 260MeV 3.5GeV 2.2GeV 3.5GeV 4.5GeV 8GeV tunnel : 40m long 2m radius Ek = 3.5GeV En=300MeV Best sin22q13 > 2.02 10-3 positive focusing vs 10 years mixed scenario. Focusing comparison Energy comparison 2y+ 8y- 5y+ 50 0 0 -50 -50 2y+ 8y- 5y+ -100 -100 -150 -150 10-3 10-4 10-3 10-4 10-4 10-3 10-3 10-4 90%CL
General comparison. • for 10 years in mixed focusing, sensitivity around q13~1° • Clear complementarily between positive scenario and bbeam (dCP>0) 5y mixed focusing 10y mixed focusing 5y positive focusing
from p and m from K0 from K Ekine (GeV) Ekine (GeV) evts/100m2/y Ekine (GeV) Ekine (GeV) Ek=3.5GeV En ~300MeV L = 40m,R=2m Neutrino Flux 100km away p+ focusing
MARS vs FLUKA At the entrance of the SB decay tunnel (after the horn focusing) R = 1m No angular cut Discrepancies reduced in the beam line A. Cazes thesis