1 / 13

Section 3-1: Properties of Parallel Lines

Chapter 3: Parallel and Perpendicular Lines. Section 3-1: Properties of Parallel Lines. Objectives. To identify angles formed by two lines and a transversal. To prove and use properties of parallel lines. Vocabulary. Transversal Alternate Interior Angles Same-side Interior Angles

titus
Download Presentation

Section 3-1: Properties of Parallel Lines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 3: Parallel and Perpendicular Lines Section 3-1: Properties of Parallel Lines

  2. Objectives • To identify angles formed by two lines and a transversal. • To prove and use properties of parallel lines.

  3. Vocabulary • Transversal • Alternate Interior Angles • Same-side Interior Angles • Corresponding Angles • Alternate Exterior Angles • Same-side Exterior Angles

  4. Transversal • A transversal is a line that intersects two coplanar lines at two distinct points.

  5. Angle Types • Alternate Interior Angles • Same-side Interior Angles • Corresponding Angles • Alternate Exterior Angles • Same-side Exterior Angles

  6. Postulate 3-1:“Corresponding Angles Postulate” • If a transversal intersects two parallel lines, then corresponding angles are congruent.

  7. Theorem 3-1:“Alternate Interior Angles Theorem” • If a transversal intersects two parallel lines, then alternate interior angles are congruent.

  8. Theorem 3-2:“Same-Side Interior Angles Theorem” • If a transversal intersects two parallel lines, then same-side interior angles are supplementary.

  9. Theorem 3-3:“Alternate Exterior Angles Theorem” • If a transversal intersects two parallel lines, then alternate exterior angles are congruent.

  10. Theorem 3-4:“Same-Side Exterior Angles Theorem” • If a transversal intersects two parallel lines, then same-side exterior angles are supplementary.

  11. Finding Angle Measures • Find the measure of each numbered angle. Justify your answer.

  12. Using algebra to find angle measures

  13. Using algebra to find angle measures

More Related