1 / 61

Network Planning Algorithms in CATV Networks

Network Planning Algorithms in CATV Networks. 博士論文計劃. Kuo-Wei Peng PhD. Student Department of Information Management National Taiwan University 6/20/2006. Outline. Introduction Problem Formulation Single-Layered Solution Procedure and Computational Experiments

tiva
Download Presentation

Network Planning Algorithms in CATV Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Network Planning Algorithmsin CATV Networks 博士論文計劃 Kuo-Wei Peng PhD. Student Department of Information Management National Taiwan University 6/20/2006

  2. Outline • Introduction • Problem Formulation • Single-Layered Solution Procedure and Computational Experiments • Multi-Layered Solution Procedure and Computational Experiments • Conclusion and Future Work

  3. Outline • Introduction • Problem Formulation • Single-Layered Solution Procedure and Computational Experiments • Multi-Layered Solution Procedure and Computational Experiments • Conclusion and Future Work

  4. Overview Research Scope Research Background Introduction Introduction of CATV Communication Networks

  5. Overview • 有線電視網路已經廣泛使用在各個地區。 • 在有線電視網路上,提供雙向數位服務是可行的。 • 有線電視網路的優點: • 高頻寬 • 高覆蓋率 • 易於擴充 • 有線電視網路適於作為資訊基礎建設中的一部份。

  6. Overview • 建構一個服務品質符合要求的有線電視網路是不容易的。 • 政府法規再加上各類新式服務的興起,這個工作變得更複雜而不易預測。 • 雙向服務的通訊品質如何滿足。 • 再加上網路成本的考量,這個問題變成了一個網路最佳化問題。

  7. Overview • 傳統的網路規劃方法,建構的網路品質有賴於網路規劃者的經驗 • 必須滿足所有通訊品質的限制 • 如何降低所需的成本 • 本論文的目標,在以最低的成本,建構符合服務品質要求的有線電視網路。

  8. Research Scope • 有線電視網路規劃問題的數學模型的建立 • 數學模型的建立 • 數學方程式的調整 • 對偶問題的轉換 • 單層網路解題程序 • 解題程序 • 相關參數的影響 • 解題過程中參數的設定與調整 • 多層網路解題程序 • 分群演算法 • 次層網路的頭端(下節點, drop points)的選擇演算法

  9. Research Background • CATV Communication Network Technology • Network Architecture • Noise-funneling effect • Traditional Network Planning Methods • Research Methods • Mathematical Programming • Geometric Programming

  10. CATV Communication Network Technology Figure 1-1. The Network Structure of CATV Networks

  11. Noise Funneling Effect Figure1-7. Noise-funnelling effect

  12. CATV Network Planning --- Traditional Approaches • 製圖 • 幹線系統設計 • 餽線系統設計 • 反向系統設計

  13. 幹線系統設計 Figure 1-8. 頭端幹線系統

  14. 餽線系統設計 • Figure 1-9

  15. Concluding Remark • It is difficult to design an CATV network systems • Intensive computational work. • Number of possible solutions is very large. • CAD tools for CATV network design • To help designer to reduce the overhead of computational work. • To track the signal quality and to make sure the end-to-end signal quality is feasible. • Unable to suggest or create a good design of CATV system • The quality of design is still relied on the experience and expertise of the designers.

  16. Research Methods • Mathematical Programming • Geometric Programming Method • Steepest Descent Method • Enhanced Steepest Descent Method • Surrogate Functions • Projection Method • Integer Programming • Linear Relaxation

  17. Geometric Programming Method • Formulation of the Primal Problem

  18. Geometric Programming Method • Formulation of the Dual Problem

  19. Outline • Introduction • Problem Formulation • Single-Layered Solution Procedure and Computational Experiments • Multi-Layered Solution Procedure and Computational Experiments • Conclusion and Future Work

  20. Problem Formulation • Mathematical Formulation of the CATV Network Planning Problem • Reformulation of the original problem • The Dual Problem

  21. Mathematical Formulation and Network Optimization • Basic ideas: formulate the network and try to optimize it.

  22. Performance Requirements • Performance requirements in downstream • CNR (Carrier to Noise Ratio) ≧43dB • X-MOD (Cross Modulation ) ≦-46dB • CSO (Composite Second Order) ≦-53dB • CTB (Composite Triple Beat) ≦-53dB

  23. Problem Formulation • Problem description • Given: • downstream performance objectives • upstream performance objectives • specifications of network components • cost structure of network components • number and position of endusers • terrain which networks will pass through and the associated cost • Determine: • routing • allocation of network components • operational parameters (e.g., gain of each amplifier)

  24. Problem Formulation • Features • Nonlinear problems • Hard to solve directly by standard methods • Some technique needed • Problem Decomposition • Stiner Tree Problem • Network Optimization • Geometric Programming • Posynomial form • Gradient-based Optimization

  25. Reformulation of the CATV Network Design Problem • Surrogate Function • Surrogate function of the objective function • Surrogate functions of the constraints

  26. Surrogate function of the objective function • Original objective function • Surrogate function of the objective function

  27. Surrogate functions of the constraints • Original Constraints for X-Mod • Surrogate function for X-Mod

  28. Surrogate functions of the constraints • Figure 2-2. SURROGATE FUNCTIONS OF X-MOD, CTB, AND CSO • Figure 2-3. Comparison of functions for X-MOD

  29. Outline • Introduction • Problem Formulation • Single-Layered Solution Procedure and Computational Experiments • Multi-Layered Solution Procedure and Computational Experiments • Conclusion and Future Work

  30. Single-Layered Solution Procedure and Computational Experiments • Solution Procedure • Analysis of Starting Points • Analysis of Initial Step Size • Analysis of Computing Time

  31. Solution Procedure

  32. The Penalty Function Where

  33. Comparison of Gradient Methods • Figure 3-2. Comparison of Solution Quality

  34. Analysis of Starting Points • Figure 3-7. Comparison of starting point: network example 3.

  35. Analysis of Starting Points • Figure3-8. Comparison of starting point: data for network example 3

  36. Analysis of Initial Step Size • Figure 3-7. Comparison of starting point: network example 3.

  37. Analysis of Initial Step Size • Figure 3-11. Comparison of initial step size: data for network example3

  38. Analysis of Initial Step Size • Initial Step Size vs. Number of Nodes on Steiner Tree Constructed

  39. Analysis of Initial Step Size • Initial Step Size vs. Penalty Parameter J

  40. Set initial step size ss=10^-k: If #(tree)<2, k=2 Else If #(tree) < 7, k=3 Else if #(tree) < 25, k=4 Else k=6; Set J=1; Set J=10*J, k=k+1, Compute the optimal X^2 == 0 End Adjustment Procedure for Initial Step Size and Penalty parameter J • Initial Step Size vs. Number of Nodes on Steiner Tree Constructed

  41. Analysis of Computing Time • Figure 3-12. Number of Network Users versus Computing Time

  42. Analysis of Computing Time • Figure 3-13. Network Size versus Computing Time

  43. Outline • Introduction • Problem Formulation • Single-Layered Solution Procedure and Computational Experiments • Multi-Layered Solution Procedure and Computational Experiments • Conclusion and Future Work

  44. Multi-Layered Solution Procedure and Computational Experiments • Multi-layered Solution Procedure • Adaptive Placement Algorithms for Drop Points • Conclusion

  45. Multi-layered Solution Procedure: Concept • Figure 4-1. 階層式規劃:第一層

  46. Multi-layered Solution Procedure: Concept (Cont.) • Figure 4-2. 階層式規劃:第二層

  47. Modified Agglomerative Hierarchical分群演算法 • 給定:網路使用者座標,最大容忍半徑R • 求解:將網路使用者分群,每個使用群的半徑皆不得大於R • 將所有網路使用者各自為一群,此時所有使用群的半徑為0。 • 建立一距離矩陣,記錄所有使用群間的距離。 • 找到距離矩陣中,距離最近的二個使用群i與j。 • 計算i與j合併後的使用群半徑為R’,比較半徑R’與R。若R’>R,則程式結束。 • 若R’<R,則合併使用群i與j為使用群i’,並更新距離矩陣。 • 回到步驟3.

  48. Network Example for Clustering • Figure 4-4. Network Example for Clustering

  49. Network Example after Clustering • Figure 4-5. Network Example after Clustering

  50. Adaptive Placement Algorithms for Drop Points • Figure 4-7. Different placement for drop points

More Related