250 likes | 261 Views
High-entropy random selection protocols. Michal Koucký (Institute of Mathematics, Prague) Harry Buhrman, Matthias Christandl, Zvi Lotker, Boaz Patt-Shamir, KoliaVereshchagin. Random string selection: Alice Bob. Goal: Alice and Bob want to agree on a random string r.
E N D
High-entropy random selection protocols Michal Koucký (Institute of Mathematics, Prague) Harry Buhrman, Matthias Christandl, Zvi Lotker, Boaz Patt-Shamir, KoliaVereshchagin
Random string selection: Alice Bob Goal: Alice and Bob want to agree on a random string r.
Goal: Alice and Bob want to agree on a random string r. →Measure of randomness: Shannon entropy H( R) = - r Pr[R = r ] ∙ log Pr[ R = r ] e.g.R uniform on {0,1}n→H( R) = n R uniform on 0n/2{0,1}n/2→H( R) = n /2 R uniform on 0n→H( R) = 0
Example: random r1r2 … rn/2 Alice random rn/2+1 … rn Bob →output r= r1r2 … rn • H( R ) = nif Alice and Bob follow the protocol. • H( R ) n/2if one of them cheats.
Main results: • Random selection protocol that guarantees H( R) n– O(1)even if one of the parties cheats. This protocol runs in log* n rounds and communicates O( n 2 ). • Three-round protocol that guarantees H( R ) ¾ n and communicates O( n ) bits.
Previous work: • Different variants • random selection protocol [GGL’95, SV’05, GVZ’06] • collective coin flipping [B’82, Y’86, B-OL’89, AN’90, …] • leader selection [AN’90,…] • fault-tolerant computation [GGL’95] • multiple-party protocols [AN’90,…] • quantum protocols [ABDR’04] • different measures • resilience • statistical distance from uniform distribution • entropy
(,)-resilience: B; |B| 2n Pr[rB] {0,1}n B • H( R) n– O(1) (, log-1 1/)-resilience. O( log* n)-rounds, O( n 2 )-communication. • [GGL] (, )-resilience, O( n 2 )-rounds, O( n 2 )-communication. • [SV] (, +)-resilience, O( log* n)-rounds, O( n 2 )-communication. • [GVZ] (, )-resilience O( log* n)-rounds, O( n )-communication.
Our basic protocol: random x1, …, xn{0,1}n Alice random y {0,1}n Bob random i {1, …, n} →output xi y • H( R ) = nif Alice and Bob follow the protocol. • H( R) n – log n if Alice cheats. • H( R) n – O(1)if Bob cheats.
Alice cheats, Bob plays honestly: • Alice carefully selects x1, …, xn • Bob picks a random y for all i and r, Pry [ r = xiy ] = 2 -n. for all r, Pry [ i ; r = xiy ] n 2 -n. • H( R ) n– log n .
Alice plays honestly, Bob cheats: • For any r1, r2 , … rn , Prx [ r1 = x1 , … rn = xn ] = 2 – n2 Pr[ r1 = x1y , … rn = xny ] 2 n – n2 where y is a function of the random x1, x2 , … xn H(x1y , …, xny ) n2 - n E[[ H( xiy ) ]] n– 1 . • H( R) n – O(1)
Our basic protocol: random x1, …, xn{0,1}n Alice random y {0,1}n Bob random i {1, …, n} →output xi y • H( R ) = nif Alice and Bob follow the protocol. • H( R) n – log n if Alice cheats. • H( R) n – O(1)if Bob cheats.
Iterating our protocol x1, …, xmy1, …, ym’ A B ij A B r’’ = … r = xir’ r’ = yir’’ → log* niterations H( R ) n– 3 regardless of who cheats.
Protocol Pi(A, B) x1, …, xli A Pi-1(B,A) jy A r = xjy l0 = n li = log li-1 k = log* n – l lk = 2
Claim: For i =0,…, k, output Ri of Pi (Alice,Bob) satisfies • H( Ri) = nif Alice and Bob follow the protocol. • H( Ri) n – log 4 liif Alice cheats. • H( Ri) n – 2if Bob cheats. Pf: Alice carefully selects x1, …, xli. Pi-1(Bob, Alice) gives y = Ri-1 with H( y| x1, …, xli ) n – 2. Alice carefully selects j to output Ri = xjy
Pf: Alice carefully selects x1, …, xli. Pi-1(Bob, Alice) gives y = Ri-1 with H( y| x1, …, xli ) n – 2. Alice carefully selects j to output Ri = xjy H( xjy ) H( xjy | x1, …, xli ) H( y | x1, …, xli ) - H( j | x1, …, xli ) H( y | x1, …, xli ) - H( j ) n – 2 – log li H( xjy , j| x1, …, xli ) H( y | x1, …, xli )
Cost of our protocol: 2 log* nrounds O( n 2 ) bits communicated Question: How to reduce the amount of communication close to linear?
Generic protocol: random x {0,1}n Alice random y {0,1}n Bob random i {1, …, n} →output f ( x,y,i) for some f : {0,1}n{0,1}n{1, …, n}→ {0,1}n • W.h.p for a random function f H( R) n – O( log n ) regardless of cheating.
Explicit candidate functions: • x iyrotation of x i-times. • ix + yx,yFk i F F = GF(2log n) k= n / log n • ix + yx,y F i H F F = GF(2n) |H|=n
Rotations: Fix i and j. For any x and y ( x iy) ( x jy ) =x i x j = x Aij where Aijhas rank n – 1. • x random n– 1 H( x Aij) H(x iy ,x jy ) H( R ) n– log n when Alice cheats H( R ) n/2 when Bob cheats
¾n-protocol: • Pick one half of the string by A-B-A “rotating” protocol and the other one by B-A-B “rotating” protocol, i.e., use the asymmetry in the cheating powers. • The “line” protocol ix + y , where x,y [GF(2 n/4 )]k and k = 4 →analysis related to the problem of Kakeya.
Fk Kakeya Problem: P Q: Pcontains a line in each direction. How large is P ?
L … collection of lines; in each direction one line. Conjecture: |PL | must be close to |F |k where PL is the union of points in L. (|F |>2.) XL… random variable – choose a line from L at random and pick a random point on it. Def: H(|F |, k) = minL H( XL) • H( XL) log |PL |
Geometric protocol: • ix + yx,yF k i F → line given bydirection x and point y Claim: Let R be the outcome of the geometric protocol. If Alice is honest then H( R ) H(|F|, k ). Furthermore, Bob can impose H( R ) =H(|F|, k ). → proof of security of our protocol implies the conjecture for Kakeya problem.
Geometric protocol: • ix + yx,yF k i F → line given bydirection x and point y Claim: Let R be the outcome of the geometric protocol. If Alice is honest then H( R ) (k /2 + 1)|F| – O(1). → For k = 4 and |F|= 2n/4 we get H( R ) 3n/4.
Open problems: • Better analysis of our candidate functions. • Other candidate functions? • Multiple parties.