1 / 25

Outline

Explore the formation of dark matter structures, linear and nonlinear growth of fluctuations, hierarchical clustering, galaxy bimodality, supernova feedback, elliptical galaxy mergers, high-redshift galaxy formation, and more.

tmckenny
Download Presentation

Outline

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Outline Part II. Structure Formation: Dark Matter 5. Linear growth of fluctuations by gravitational Instability 6. Statistics of fluctuations: initial fluctuations and the cold-dark-matter scenario 7. Nonlinear growth of structure: spherical collapse, virial equilibrium, Zeldovich approximation and the cosmic web, N-body simulations 8. Hierarchical clustering: Press-Schechter halo distribution, EPS merger trees, galaxy/halo biasing, HOD and correlation function 9. Dark-matter halos: universal profile, the cusp/core problem, dynamical friction, tidal effects, halo shape 10. Substructure of dark-matter halos, phase-space density

  2. Outline cont. Part III. Galaxy Formation: Including gas and Stars 11. Angular momentum: tidal-torque theory, halo spin, disk formation, the AM problem 12. Galaxy bimodality: observations, virial shock heating, star formation and quenching mechanisms, downsizing 13. Dwarf galaxies and supernova feedback 14. Formation of elliptical galaxies by mergers: missing dark matter? origin of scaling relations, origin of red sequence and downsizing 15. Galaxy formation at high redshift: cold streams, clumpy disks and compact spheroids 16. Massive black holes in galaxies: AGN feedback 17. Semi-analytic modeling of galaxy formation

  3. Linear Growth of Fluctuations by Gravitational Instavility 2dF WMAP

  4. 2dF Galaxy Redshift Survey ¼ M galaxies 2003 CFA Survey 1980

  5. History Early Universe Cosmic Microwave Background Today time

  6. Cosmological Epochs recombination last scattering 380 kyr z~1000 CMB transparent optical opaque: “dark ages” first stars reionization 180 Myr z=8.81.5 galaxy formation: optical transparent → see galaxies today 13.8 Gyr

  7. Gravitational instability small-amplitude fluctuations:  gravitatinal instability: galaxy cluster  void 0

  8. ימסוקה גראמה - תויצאוטקלפה לודיג

  9. Gravitational Instability: linear, matter-era : equations Fluid    Continuity Euler Poisson   ) 1 ( ( )  0 V          (2) V ( V ) V P/ρ Φ           2 ) 3 ( 4 G      Uniform background : ( ) . r const     2 8 4 a  a  G a   G 3        ) 1 ( 0 r a x v r       3 2 3 a a a a   ) 1 ( / 3 H a  a H              Perturbati ons : ( , ) ( )[ 1 ( , )] ( ) r t t r t V H t r v P p          u u  st 1 order : 1 etc.              ) 1 ( ( )  0 H r v v                   2   ) 2 ( ( ) ( ) v H r v H v v v c             s     2 ) 3 ( 4 G     P  P  P  kT   2 u  ( ideal gas ) P c       s m   p

  10.  r a      Comoving coordinate : s x r a         r x r a  t t a   t x r     / / w v a a         ) 1 ( ( ) 0  w w              2   1 ) 2 ( 2 (  )  w H w w w a c          s     2 2 ) 3 ( 4 [ / 3 (  ) 2 ] G H    u  1  ( eq. ) 2 / ( eq. ) 1  a  t       H 2      2 2 2 4  G a c     u s gravity pressure a     3 ( , ) ( ) ( ) ( )  x t a t H t t a   u a

  11. a     H 2      2 2 2 4  G a c  3     ( ) ( ) ( )  a t H t t a   u u s a  Static background : 0 . 1 . a  a const  const    u  2      2 2 exp[ ( )] 4 i k x t k c G      s u pressure gravity / 1   2 / 3   2 2      / 3 2     4 2 k 4 G c T     Jeans scale : u s k M           J J J m   2 / 1 2 3 G c J s      t t ( ) 0  p Ae Be      J   stable oscilation s   J   Expanding background , :  J 4 2 t  / 2 3 1  At Bt       2 / 3   0 k a t       2 3 3 t 3 2 t t       . freezout const    0 0 1 k a t        3 2 t

  12. Properties of the linear growing mode:      :  2 linear 2 / 3 (  ) 2 ( ) ( ) H H H t t     growing mode D(t) δ D  D   3 6 . 0 2 ( ) ( 2 ) f H f          2 HD D  1   continuity v      Hf  3 H 2      Poisson irrotation al v      v v f The Jeans scale in an expanding universe:     k i  x  k H In space  : ( ) k t e r ax    k       2     2 for each : 2 4 ( ) same Jeans scale k G k c     k k s k

  13. Lecture Statistics of Fluctuations: The Cold Dark Matter Scenario

  14. The Initial Fluctuations At Inflation: Gaussian, adiabatic a realization of an ensemble ensembe average ~ volume average   ( ) x     fluctuation field  ( ) x        k i x     ~   ( ) Fourier x ke  Power Spectrum 2| ) n ( ) | ( P k k k      k   ~ 2 / K K K rms      2 3 3 3 ~ exp[ ( ) ' ] ' ~ i k k  x d k d k d k   k 0   0          ' k k k k  ' 0 k k   ( ) ' k k  Dirac   2 /  2 3 ( 3 / ) 3  n     2| P d k M |           k k k k  0 k δ Pk  3 / 2  1 n M    / 1  2 0  n M    3 . n const   M k

  15. Scale-Invariant Spectrum (Harrison-Zel’dovich) R  t mass  MH t Horizon 3 2   a t  H t m M time t 2 / 3 t   2 / 3 2 / 3     ( , ) M t M t        H ( ) t M H  . const H  1 n P k  k 2 / 3   M M

  16. Cosmological Scales mass ~ R  ct MH t Horizon 3 2   a t  m  3  a matter  4  a rad t0 teq time zeq~104

  17. CDM Power Spectrum MH t  mass H  growth when matter is self- gravitating  H  H   rad mass t time teq CDM 1  k Pk  2 / 3  3 M  k CDM HDM HDM free streeming mass k kpeak m h Meq

  18. Formation of Large-Scale Structure Fluctuation growth in the linear regime: rms fluctuation at mass scale M: Typical objects forming at t:   ~ 1    / 2 t 6 3 1 a  / ) 3   M M   n  0  a 2    ( n    2 / 3     / 1   M a * example 6 M a   * HDM: top-down CDM: bottom-up / 1 2 / 1 2 2 2                     1 1 free streaming 0 0 M M

  19. Micro-Macro Connection Cold Dark Matter Hot Dark Matter 

  20. 2dF redshift survey

  21. 2dF and Mocks

  22. Power Spectrum

  23. Success of the LCDM Power Spectum

More Related