1 / 39

Sorting

Sorting. Quick Sort. Example. S={6, 5, 9, 2, 4, 3, 5, 1, 7, 5, 8}. 2, 4, 3, 1, 5, 5, 6, 9, 7, 8, 5. 2, 1, 3, 4, 5. 5. 1, 2. 3. 4, 5. 5, 6, 7, 8, 9. O(1). O(n). O(n). t(n/2). Quick Sort. Step 1. If n = 1 then return. Step 2. Find the median m of the input array A .

tmegan
Download Presentation

Sorting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sorting

  2. Quick Sort Example S={6, 5, 9, 2, 4, 3, 5, 1, 7, 5, 8} 2, 4, 3, 1, 5, 5, 6, 9, 7, 8, 5 2, 1, 3, 4, 5 5 1, 2 3 4, 5 5, 6, 7, 8, 9

  3. O(1) O(n) O(n) t(n/2) Quick Sort Step 1. If n = 1 then return. Step 2. Find the median m of the input array A. Step 3. Use m to partition A into two subsequences B and C. Step 4. Quick sort B. Step 5. Quick sort C.

  4. The time complexity of Quick sort t(n)= O(1) + O(n) + O(n) + 2t(n/2) = cn + 2t(n/2) = O(n log n)

  5. Merging Networks Sorting Networks (1, 1)-merger (comparator):

  6. Merging Networks (2, 2)-merger:

  7. Sorting Networks

  8. Running Time s(2) = 1, i = 1 s(2i) = s(2i-1) + 1, i > 1. There are log n stages in all. s(2i): the time required in the ith stage. s(2i) = i

  9. t(n) = s(21) + s(22) + … + s(2log n) = 1 + 2 + … + log n = O(log2 n)

  10. Number of Processors q(2i): the number of comparators required in the ith stage. q(2) = 1, i = 1 q(2i) = 2q(2i-1) + 2i-1 - 1, i > 1. q(2i) = (i-1)2i-1 + 1

  11. q(2i) = 2q(2i-1) + 2i-1– 1 = 22q(2i-2) + 2i-1– 2 + 2i-1– 1 =23q(2i-3) + 2i-1– 22 + 2i-1– 21 + 2i-1– 20 … = 2i-1q(21) + 2i-1 + … + 2i-1 – (1 + 2 + … + 2i-2) = 2i-1 + (i – 1)2i-1– 2i-1 + 1 = (i – 1)2i-1 + 1

  12. p(n) = 2(logn)-1q(21) + 2(logn)-2q(22) + … + 20q(2log n) = O(nlog2 n)

  13. Cost c(n) = p(n) * t(n) = O(nlog2 n) * O(log2 n) = O(nlog4 n)

  14. Sorting on a linear array (odd-even transposition)

  15. Procedure ODD-EVEN TRANSPOSITION (S) for j = 1 to ┌n/2┐ do (1) for i = 1, 3, …, 2└n/2┘ - 1 do in parallel if xi > xi+1 then xi ←→ xi+1 end if end for (2) for i = 2, 4, …, 2└(n-1)/2┘ do in parallel if xi > xi+1 then xi ←→ xi+1 end if end for end for

  16. odd-even steps. Time: = O( ) Cost:

  17. 2 ways for reducing cost: (i) reduce running time (ii) reduce # of processors Reducing running time is hopeless since the lower bound for sorting on a linear array of n processors is . .

  18. Sorting on a linear array (odd-even transposition)

  19. N processors are available, N < n. Each processor stores data elements. O((n/N)log(n/N)) Stage 1: Sort sequentially in each processor. Stage 2: Odd-even transposition sort. Each comparison-exchange is replaced with a merge-split. 用sequential merge, 每次O(n/N)的時間, 共有N/2個steps, 所以總時間為 . ┌ N/2┐O(n/N)

  20. C(n) =p(n)*t(n) = The algorithm is cost optimal when . .

  21. CRCW Sort 3 1 0 2 5 2 4 5 5 2 4 5

  22. Procedure CRCW SORT(S) Step 1. for i = 1 to n do in parallel for j = 1 to n do in parallel if (si > sj) or (si= sj and i > j) then P(i, j) writes 1 in ci else P(i, j) writes 0 in ci end if end for end for Step 2. for i = 1 to n do in parallel P(i, 1) stores si in position 1 + ci of S end for O(1) O(1)

  23. p(n) = n2 t(n) = O(1) c(n) = n2

  24. CREW Sort(利用CREW MERGE) S={2, 8, 5, 10, 15, 1, 12, 6, 14, 3, 11, 7, 9, 4, 13, 16} N = 4 Step 1. P1: {2, 8, 5, 10} P2: {15, 1, 12, 6} P3: {14, 3, 11, 7} P4: {9, 4, 13, 16} Step 2. P1: {2, 5, 8, 10} P2: {1, 6, 12, 15} P3: {3, 7, 11, 14} P4: {4, 9, 13, 16} Step 3. P1, P2 : {1, 2, 5, 6, 8, 10, 12, 15} P3 , P4 : {3, 4, 7, 9, 11, 13, 14, 16} P1, P2 , P3 , P4 : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

  25. Procedure CREW SORT(S) Step 1. for i = 1 to N do in parallel Processor Pi 1.1 reads a distinct subsequence Si of S of size n/N 1.2 QUICKSORT(Si) 1.3 S(i, 1) ← Si 1.4 P(i, 1)← {Pi} O(n/N log n/N)

  26. Step 2. u ← 1 v ← N while v > 1 do for m = 1 to └v/2┘ do in parallel P(u+1, m) ← P(u, 2m-1) ∪ P(u, 2m) The processors in the set P(u+1, m) perform CREW MERGE(S(u, 2m-1), S(u, 2m), S(u+1, m)) end for if v is odd then P(u+1, [v/2]) ← P(u, v) S(u+1, [v/2]) ← S(u, v) end if u ← u + 1 v ← [v/2] end while 每次O(n/N + log n) 共做[log N]次, 總共所花時間為 [log N] * O(n/N + log n)

  27. t(n) = O((n/N) log(n/N)) + O((n/N) + log n) *log N = O((n/N) log n – (n/N) log N) + O((n/N) log N + log n log N) = O((n/N) log n + log n log N) c(n) = p(n) * t(n) = N * O((n/N) log n + log n log N) = O(n log n + N log n log N) The algorithmis cost optimal whenN ≦ n/log N.

  28. Sorting on the EREW Model Simulating Procedure CREW Sort: 用MULTIPLE BROADCAST來取代 Concurrent Read. 多花log N的時間. t(n) = O((n/N)log n + log n log N) * O(log N) = O([(n/N) + log N] log n log N) c(n) = O([(n/N) + log N] log n log N) * N = O((n +N log N) log n log N) which is not cost optimal.

  29. Sorting by Conflict-Free Merging 用EREW MERGE取代CREW MERGE. 每次EREW MERGE所花的時間為 O((n/N) + log n log N). 要做log N次, 所以總共所花時間為 t(n) = O((n/N) log (n/N)) + O((n/N) + log n log N) * log N = O([(n/N) + log2N] log n) c(n) = O((n + N log2N) log n) which is cost optimal when N ≦ n/log2N.

  30. 原因稍後解釋 Parallel Quicksort S={5, 9, 12, 16, 18, 2, 10, 13, 17, 4, 7, 18, 18,1 1, 3, 17, 20, 19, 14, 8, 5, 17, 1, 11, 15, 10, 6} N = n 1-x = 27 1-x x ≒0.5 n = 27 N = 5 將 n 個data分成 21/x 塊,每塊有 n/21/x 個data. n/21/x = 27/4 ≒7 21/x = 21/0.5 = 4 所以PARALLEL SELECT第7, 14, 21大的數字, 分別另為m1, m2, 和m3. m1 = 6, m2 = 11, m3 =17.

  31. 4 2 7 m1 = 2, m2 = 4, m3 = 5 m1 = 8, m2 = 10, m3 = 11 m1 = 6, m2 = 11, m3 = 17 S1 = {5, 2, 4, 3, 5, 1, 6} S2 = {9, 10, 7, 8, 10, 11, 11} S3 = {12, 16, 13, 14, 15, 17, 17} S4 = {18, 18, 18, 20, 19, 17} n = 7 N = n 1-x = 7 1-0.5 ≒ 2 P3, P4: S2 = {9, 10, 7, 8, 10, 11, 11} P1, P2: S1 = {5, 2, 4, 3, 5, 1, 6} 將 n 個data分成 21/x 塊,每塊有 n/21/x 個data.

  32. P1, P2: S = {5, 2, 4, 3, 5, 1, 6} P3, P4: S = {9, 10, 7, 8, 10, 11, 11} m1 = 2, m2 = 4, m3 = 5 m1 = 8, m2 = 10, m3 = 11 S1 = {7, 8} S2 = {9, 10} S3 = {10, 11} S4 = {11} S1 = {1, 2} S2 = {3, 4} S3 = {5, 5} S4 = {6}

  33. 4 2 7 m1 = 18, m2 = 18, m3 = 20 m1 = 13, m2 = 15, m3 = 17 m1 = 6, m2 = 11, m3 = 17 S1 = {5, 2, 4, 3, 5, 1, 6} S2 = {9, 10, 7, 8, 10, 11, 11} S3 = {12, 16, 13, 14, 15, 17, 17} S4 = {18, 18, 18, 20, 19, 17} n = 7 N = n 1-x = 7 1-0.5 ≒ 2 P3, P4: S4 = {18, 18, 18, 20, 19, 17} P1, P2: S3 = {12, 16, 13, 14, 15, 17, 17} 將 n 個data分成 21/x 塊,每塊有 n/21/x 個data.

  34. P1, P2: S = {12, 16, 13, 14, 15, 17, 17} P3, P4: S = {18, 18, 18, 20, 19, 17} m1 = 18, m2 = 18, m3 = 20 m1 = 13, m2 = 15, m3 = 17 S1 = {17, 18} S2 = {18, 18} S3 = {19, 20} S4 = { } S1 = {12, 13} S2 = {14, 15} S3 = {16, 17} S4 = {17}

  35. procedure EREW SORT (S) if then QUICKSORT (S) else (1) for i=1 to k-1 do PARALLEL SELECT (S, ) {Obtain } end for (2) (3) for i=2 to k-1 do end for (4) (5) for i=1 to k/2 do in parallel EREW SORT end for (6) for to k do in parallel EREW SORT end for end if

  36. : number of processors ,

  37. Why ? elements use processors. processors. elements use

  38. time: c(n) = p(n)*t(n) = n1-x * nx log n = n logn which is cost optimal.

More Related