1 / 46

B c lifetime measurement using B c J/ y e X channel (Preblessing / cdfnote 7758)

B c lifetime measurement using B c J/ y e X channel (Preblessing / cdfnote 7758). Masato Aoki, Shinhong Kim University of Tsukuba Ilsung Cho, Intae Yu SungKyunKwan University Ting Miao FNAL. Introduction. We had measured the cross section of B c in J/ y +e X channel (note7518)

tobit
Download Presentation

B c lifetime measurement using B c J/ y e X channel (Preblessing / cdfnote 7758)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bc lifetime measurement usingBcJ/y e X channel(Preblessing / cdfnote 7758) Masato Aoki, Shinhong Kim University of Tsukuba Ilsung Cho, Intae Yu SungKyunKwan University Ting Miao FNAL

  2. Introduction • We had measured the cross section of Bc in J/y+e X channel (note7518) • Electron ID using SoftElectronModule, dE/dx • Lxy>3sigma to kill prompt background • Background : • Fake electron : estimate fake rate, J/y+track as a control sample • Residual conversion : estimate conversion finding efficiency using B0J/y p0, p0gg or gee MC. Use J/y+tagged conversion • b-bbar : use Pythia MC, B+J/yK+ is used for the normalization • Fake J/y : J/y mass sideband subtraction • We release the lifetime cut and measure the Bc lifetime • New background from prompt events

  3. J/y+e selection cuts

  4. Summary of x-section measurement *Prompt BKG is killed by lifetime cut (Lxy>3sigma)

  5. Overview of lifetime measurement procedure • Same cuts as Bc x-section measurement (note7518) • Same technique for background fraction estimation • Background lifetime shapes from fitting background samples • Follow B+ lifetime measurement(CDF6266) for techniques • Single Gaussian as resolution function • Systematic error includes study of alternative resolution function and Punzi effect • K-factor estimation similar to that of BDln but with binning of M(J/y+e)

  6. Summary after releasing lifetime cut Excess contains prompt BKG and Bc signal

  7. Background fraction • Background fraction (the denominator includes prompt bkg and Bc signal) • fake e : 0.141 +/- 0.022 • res. conv : 0.086 +/- 0.041 • bbbar : 0.080 +/- 0.022 • fake J/y : 0.209 +/- 0.012 • Statistical and systematic errors are included • Constrain the fractions for the final fitting using Gaussian

  8. 0 0 0 0 1 1 1 1 2 2 2 2 K-factor

  9. Additional cuts for the lifetime analysis • Check sLxy distribution • B+J/yK+ • J/y+electron • Use sLxy<70mm

  10. Fitter check using B+J/yK+ • Simply check our fitter using B+J/yK+ • Result • ct=504.1  9.3mm • Agree with blessed result from CDF

  11. Overview of background shape determination • Fake electron : • J/y+track with electron fake rates • Fake J/y : • Sideband in J/y+track candidates • Residual conversion : • J/y+tagged conv. electron with conversion finding efficiency • b-bbar : • Pythia MC but with change of GS/FE/FC for systematic error • Prompt : • Assume to be resolution function

  12. Fake electron • PDF for fake electron BKG e : fake rate N : normalization factor can be expected from J/y mass distribution * Use same error scaling factor for both real J/y and fake J/y here

  13. fake J/y parameterization • PDF for fake J/y

  14. Fit results of fake electron & fake J/y table  next page

  15. Fit results of fake electron & fake J/y l : mm

  16. Issue on fake J/y shape • J/y+track, conversion sample have fake J/y component as well as J/y+electron • Looking at fake J/y+track, conversion, electron events, we found their shapes are similar see next page • Use common fake J/y shape • Use J/y+track sample for every fake J/y shapes • Limited stat. for conversion, electron samples

  17. J/ysideband event comparison J/y+track • similar shapes J/y+electron J/y+conv.-e

  18. Residual conversion • PDF for residual conversion BKG Constrain fake J/y and scale factor

  19. Fit result of conversion BKG l : mm Constrained using J/y+track sample

  20. b-bbar background • PDF for b-bbar BKG • Background events passing selection cut from each production process • Gluon splitting : 70% • Flavor excitation : 25% • Flavor creation : 5% (scaling factor is not constrained) Syst. study : GS and FE

  21. Fit result of b-bbar BKG l : mm

  22. Prompt background • It is difficult to estimate the size of prompt background from either MC or data  Float prompt BKG fraction for the final fitting • We use resolution function as prompt background shape (Gaussian)

  23. Likelihood definition for the signal fitting • PDF for signal • Likelihood

  24. Signal fitting ct(Bc)= 142.6 +22.2/-19.9 mm

  25. signal fitting (cont’d)

  26. Systematic uncertainties • K-factor • M(Bc), pT(Bc),lifetime(Bc),decay channel,… • Background shapes • fake J/y shapes, w/o efficiency weighting,… • Resolution function (follow CDF6266) • Choice to treat Punzi effect as systematic error for now • Double Gaussians, Gaussian+symmetric exponential • Silicon alignment  borrow the result of B lifetime analysis using J/y+X exclusive mode

  27. Systematics from K-factor • M(Bc)  6.291, 6.251 GeV  142.4, 142.6 mm  Dct :  0.2 mm • t(Bc)  0.4, 0.7 ps  142.3, 142.4 mm  Dct :  0.3 mm • HbJ/yX spectrum  141.3 mm  Dct :  1.3 mm • Trigger simulation  142.8 mm  Dct :  0.2 mm • Inclusive BcJ/yXen channel (K factor  next page)  142.1 mm  Dct :  0.5 mm

  28. K-factor for inclusive Bc decays

  29. Systematics from background shapes • Fake J/y : Use J/y+e sideband • 137.5 mm  Dct : -5.1 mm • Res. conv. : Use J/y+conv sideband • 145.1 mm  Dct : +2.5 mm • b-bbar : No error scaling in MC fitting  140.8 mm  Dct : - 1.8 mm

  30. fake rate / finding efficiency weighting Fake e : 141.2 mm  Dct : -1.4 mm Conv. : 141.7 mm  Dct : -0.9 mm J/y+conv.-e J/y+track

  31. b-bbar : 100% FE, 100% GS l : mm • 100% FE  152.4 mm : Dct = +9.8 mm • 100% GS  140.6 mm : Dct = -2.0 mm

  32. Different resolution functions • Single Gaussian • Double Gaussians • Gaussian + symmetric exponential •  Convolute

  33. J/y+track fit result for Gaussian+Symmetric Exp. ct(Bc)=136.5 mm  Dct : -6.1 mm

  34. J/y+track fit result for Double Gaussians ct(Bc)=136.2 mm  Dct : -6.4 mm

  35. ct error distributions for Punzi effect ct(Bc)=138.0 mm  Dct : -4.6mm

  36. Systematics from ct resolution • Resolution function  Dct : -6.4 mm • Punzi effect (sct of fake J/y, fake e, conv, others)  Dct : -4.6mm • Silicon alignment effect from note7409  Dct : 1.0 mm

  37. Summary of systematic errors K factor  1.5 mm BKG shapes +10.1 / -6.0 mm Resolution +1.0 / -7.9 mm Total:+10.3/-10.0 mm

  38. Summary • We measured the Bc lifetime using J/y+electron • ct(Bc)=142.6 +22.2/-19.9(stat.) 10.3(syst.) mm or • t(Bc)=0.475 +0.074/-0.066(stat.) 0.034(syst.) ps • Details are described in note7758 • Theoretical prediction • 0.55 0.15 ps • Run1 CDF • 0.46 +0.18/-0.16 0.03 ps • Run2 D0 • 0.448 +0.123/-0.096 0.121 ps

  39. Backup

  40. fake J/y with 2 negative exponentials • Why fake J/y fit quality is so bad? • complicated shape at ct<0 of fake J/y event makes bad fit quality • try to add one more negative exponential •  see next page • result of Bc fitting: ct(Bc) = 142.1 mm • the effect of the negative side is –0.5 mm

  41. fake J/y with different parameterization w/ one negative exponential w/ two negative exponentials

  42. b-bbar : FE only fixing s=1.25

  43. For the lifetime measurement • Same cuts as Bc x-section measurement (note7518) • Mass window : M(J/y+e)=4 ~ 6GeV/c2 • Background • fake electron : use J/y+track • fake J/y : use fake J/y+track • residual conversion : use J/y+tagged conv. • b-bbar : Pythia MC • prompt : resolution function (Gaussian) • Use common fake J/y shape for J/y+track, J/y+conv., J/y+electron samples • Constrain background shapes using Gaussian • K-factor Divide by 4 mass bins (4-4.5, 4.5-5, 5-5.5, 5.5-6 GeV/c2)

  44. Gaus+Gaus && Punzi effect • Resolution function is fixed using B+ events • RF parameters from B+J/yK+ fitting • s=1.271 +0.018/-0.017 • fs2=0.10 +0.016/-0.014 • s2=3.07 +0.18/-0.17 • J/y+e fit result with new RF && Punzi term • ct(Bc) = 131.4 +21.5/-19.2 mm Dct(Bc) = -11.2 mm

  45. Gaus+Sym. Exp && Punzi effect • Resolution function is fixed using B+ events • RF parameters from B+J/yK+ fitting • s=1.284 +0.015/-0.015 • fexp=0.21 +0.03/-0.03 • sexp=1.70 +0.13/-0.11 • J/y+e fit result with new RF && Punzi term • ct(Bc) = 134.4 +21.8/-19.4 mm Dct(Bc) = -8.2 mm

More Related