1 / 27

Budowa reguł decyzyjnych z rozmytą granulacją wiedzy

Budowa reguł decyzyjnych z rozmytą granulacją wiedzy. Zenon A. Sosnowski Wydział Informatyki Politechnika Białostocka Wiejska 45A, 15-351 Bialystok zenon@ w i.pb. edu .pl. Agenda. wprowadzenie drzewa decyzyjne (DT) zbiory rozmyte w granulacji atrybutów

toby
Download Presentation

Budowa reguł decyzyjnych z rozmytą granulacją wiedzy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Budowa reguł decyzyjnych z rozmytą granulacją wiedzy Zenon A. Sosnowski Wydział Informatyki Politechnika Białostocka Wiejska 45A, 15-351 Bialystok zenon@wi.pb.edu.pl

  2. Agenda • wprowadzenie • drzewa decyzyjne (DT) • zbiory rozmyte w granulacji atrybutów • algorytm generowania kontekstowych DT • przykład • wnioski

  3. Rozmyta sieć RETE The inference mechanism realizes a generalized modus ponens rule. if A then C CFr A'CFf ---------------------- C' CFc CFr is an uncertainty of the rule CFf is an uncertainty of the fact CFc is an uncertainty of the conclusion CFc = CFr * CFf

  4. Fuzzy_Fuzzy

  5. (speed medium) - WME SINGLE (LV speed) MULTIFIELD End of pattern M.(very fast) (attached) M.(slow) (attached) activation rule r2 (defrule r1(speed very fast)=> ( . . . )) (defrule r2(speed slow)=> ( . . . ))

  6. Decicion Trees – An Overview • used to solve classification problems • structure of problem - attributes - each attribute assumes a finite number values - finite number of discrete classes • entropy-based optimization criterion • architecture of decision tree: nodes – attributes, edges – values of attributes

  7. Coping with Continuous Attributes Decision trees require finite-valued attributes What if attributes are continuous ? Attributes need to be discretrized Options: - discretize each attribute separately (uniform and nonuniform) - discretize all attributes (clustering)

  8. Quantization of attributes through clustering • Fuzzy Clustering • Context-based fuzzy clustering

  9. Fuzzy Clustering (FCM) versus Context-Based FCM (cFCM) Fuzzy clustering: objective function and its iteraive optimization Context-base fuzzy clustering: - objective function minimized iteratively - continuous classification variable granulated with the use of linguistic labels

  10. Context-Based Fuzzy Clustering Given: data {xk,yk}, k=1,2,…,N, number of clusters (c), distance function ||.||, fuzzy set of context A defined over yk Constrained-based optimization of objective function subject to

  11. From context fuzzy set A to the labeling of data to be clustered

  12. Context-Based Fuzzy Clustering:An Iterative Optimization Process Given: The number of clusters (c). Select the distance function ||.||, termination criterion e (>0) and initialize partition matrix U U. Select the value of the fuzzification parameter “m” (the default is m=2.0) • Calculate centers (prototypes) of the clusters i=1, 2, ..., c 2. Update partition matrix i=1, 2, ..., c, j=1, 2, ..., N 3. Compare U' to U, if termination criterion ||U’ - U|| <e is satisfied then stop, else return to step (1) and proceed with computing by setting up U equal to U' Result: partition matrix and prototypes

  13. Information Granules in the Development of Decision Trees • define contexts (fuzzy sets) for continuous classivication variable • cluster data for each context • project prototypes on the individual axes – this leads to their discretization • carry out the standard ID-3 algorithm W. Pedrycz, Z.A. Sosnowski, „The designing of decision trees in the framework of granular data and their application to software quality models”, Fuzzy Sets & Sysytems, vol. 124, (2001), p. 271-290

  14. Fuzzy Sets of Contexts: Two Approaches • subjective selection depending on the classification problem • supported by statistical relevance (σ-count of fuzzy contexts)

  15. Constructing linguistic terms – classes (thin line) and their induced interval-valued counterparts (solid line)

  16. C - Fuzzy Decision Trees W. Pedrycz, Z.A. Sosnowski, „C-Fuzzy Decision Trees”, IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol. 35, No 4, 2005, p. 498-511.

  17. Architecture of the cluster-based decision tree • cluster all data set X • repeat • allocate elements of X to each cluster • choose the node with the highest value of the spliting criterion • cluster data at selected node untiltermination criterion is fulfield

  18. Node splitting criterion Node of the tree Ni = <Xi, Yi, Ui> where: Xi = { x(k) | ui(x(k)) > uj(x(k))} Yi = {y(k)| x(k)εXi} Ui = [ui(x(1)) ui(x(2)) … ui(x(N))]

  19. Stopping criterion(structurability index)

  20. C-fuzzy tree in the classification (prediction) mode assign x to class wi if ui(x) exceeds the values of the membership in all remaining clusters

  21. Experiments Data sets from the UCI repository of Machine Learning Databases (http://www.ics.uci.edu) • Auto-Mpg • Pima-diabetes • Ionosphere • Hepatitis • Dermatology

  22. Hepatitis data

  23. Dermatology data

  24. Context-based Fuzzy Clustered-oriented Decision Trees(CFCDT) . . . . .

  25. Architecture of the Context-based Fuzzy Clustered-oriented Decision Tree define contexts (fuzzy sets) for classivication variable for each context do • cluster (cFCM) Xi(data set of i-th context) • repeat • allocate elements of Xi to each cluster • choose the node with the highest value of the spliting criterion • cluster (cFCM) data at selected node until termination criterion is fulfield enddo

  26. Problem Implementation issues: • high complexity –> grid or cluster computing • agregation -> testing of different appraches

  27. Dziękuję za uwagę

More Related