500 likes | 704 Views
CMS Bc 模拟重建和分析. 陈 国 明. CMS Experiment. 2007 年夏. Large Hadron Collider. CMS. At 10 34. Bunch cross: every 25ns 23 inelastic events per bunch cross Pile Up. 16 μ m. 77mm. At 10 33 : 2.3 events /cross. Minimum bias events. the average charge multiplicity: 30
E N D
CMS Bc 模拟重建和分析 陈 国 明
CMS Experiment 2007年夏 Large Hadron Collider CMS
At 1034 Bunch cross: every 25ns 23 inelastic events per bunch cross Pile Up 16μm 77mm At 1033 : 2.3 events /cross
Minimum bias events the average charge multiplicity: 30 for |η|<2.5, pT>150MeV
CMS Experiment η=2.5 z y x Cross-sectional view of CMS
Transverse slice through CMS detector Click on a particle type to visualise that particle in CMS Press “escape” to exit
高能所: 端盖μ子 探测器的 1/3 磁铁支架 地板 北大: 部分RPC CMS 5M CHF 2500万人民币
ATLAS 高能所: 桶部和端盖交接 处的μ子探测器 部分桶部μ子探测器 山东大学: 端盖μ子触发器的1/6 中国科技大学: 端盖μ子触发电子学 南京大学: 前后向吸收体 1.5M CHF 750万人民币
取得了入场券 • 我国在硬件上的投了资, 取得了数据分析的入场券。 • 与投资多的国家有平等的机会,分析所有数据。
数据分析是挑战 • 数据量大 • 本底高 • 探测器庞大, 软件环境复杂 • 竞争激烈:30 多个国家,200多个大学和研究所, 2000多科学家
国内LHC物理分析的现状 从2000年开始连续3次向基金委申请面上项目, 用作CMS 的MC 研究, 未批准. 2004年设立重点基金, 并批准135万支持CMS和ATLAS的MC模拟. 2005—2008 4年 CMS 高能所 30 万 Bc HVV CMS 北大 35 万 大横动量J/Ψ ATLAS 高能所 30 万 Htt ATLAS 山大 30 万 tt 公用 10 万
计算设施初步计划 在高能所为CMS 和 ATLAS各建一个Tier2 计算设施, 需经费 2000万 但还没有落实
IHEP CMS物理分析设想 选取 2l+X sample 头三年, 亮度≈1033, 轻子触发横动量: single electron >29GeV double electron >17GeV single muon >19GeV double muon >7GeV 合计 事例率: 60Hz 每年: RECO 75TB, AOD 25TB, 共100TB 往后,亮度1034 ,轻子触发横动量提高
刻度 根据人力情况选做部分子探测器的刻度: • MUCH μ+μ-对, J/Ψ, Z0峰, MUCH 径迹与TRACKER径迹的对比 • TRACKER e+e-对, μ+μ-对, J/Ψ, Z0峰, MUCH 径迹与TRACKER径迹的对比 • ECAL e+e-对, J/Ψ, Z0峰, 能量动量对比
亮度测量 通过Drell-Yan e+e-,μ+μ-的角分布测量亮度 目前,理论计算的误差 2%
物理研究 • J/Ψ→μ+μ-,Υ→μ+μ-横动量分布 • Bc→J/Ψlν, J/Ψπ J/Ψ→μ+μ- ,e+e- • Blind search e+e- , μ+μ- , e+μ- , e-μ+ 共振态 • Stau 寻找 • HWW coupling l+l+ missing ET • l-l- , l+l+ , without missing ET majorana ν • Higgs search H →ZZ →l+l- jj
CMS Bc goals and channels Mass , life time and relative branching ratio 1. Bc→J/Ψlν(J/Ψ→l+l-) 2. Bc→J/Ψπ(J/Ψ→l+ l-)
Bc Meson (Experiment) Experimental observation (CDF & D0 , Tevatron) 1998 2004 2005 Recent results on Bc meson
LHC (14TeV) p p Production of Bc at LHC
CMS Experiment Adavantage • LHC : PP Energy 14TeV The production cross section of Bc meson will be ~ 10 bigger than that at Tevatron. • The CMS detector has the similar structure as CDF, and has larger detector cover region than CDF. CMS :eta~(-2.5,2.5) CDF:eta~(-1,1) (RUN I) eta~(-1.5,1.5) (RUN II) (Muon system) • The CMS detector has a better identified ability to muons ,this is more useful for the channels which include muon/muons in the final state. And better vertexing.
Our MC goals • Studying the feasibility of research of Bc meson at the CMS • Studying the events select strategy of the Bc reconstruction • Estimating the number of Bc events available at the CMS • Studying the system error Preparing for the near future experiment!
The Installation of CMS Software The CMS software was downloaded and installed in our home machine successfully. ORCA_8_1_3 OSCAR_3_2_4 (2004,10) ORCA_8_6_1 OSCAR_3_6_3 (2004,12) ORCA_8_7_3 OSCAR_3_7_0 (2005,4) The version of the CMS software are being used in our home machines are OSCAR_3_7_0ORCA_8_7_3 Newest: OSCAR_3_9_8 ORCA_8_13_1 need new framework .
Display of Bc events Bc→J/ψµν (J/ψ→µµ)
Display of Bc events Bc→J/ψµν (J/ψ→µµ)
The CMS Analysis chain HEPEVTNtuple MC generator ORCA OSCAR OSCAR 1)digitization 2)reconstruction 3)analysis SimReader RecReader RecReader Ntuplesignal POOLSimHits/signal ROOTTree POOL Digis DST Ntupleminbias POOLSimHits/minbias “data summary tape” User
MC generator Bc production: C.H. Chang X.G. Wu ITP Beijing Bc decay and interface with OSCAR: G.M. Chen S.H. Zhang IHEP Beijing A.A. Belkov S. Shulga JINR Dubna (Russia)
MC generator comparision of Pt distributions of Bc meson PYTHIA~ 1event/2 min. BCVEGPY~ 102 events/ min.
Single lepton reconstruction efficiency The reconstructed efficiency of single muon/electron V.S. The Pt cut of the single muon/electron In order to get the reconstructed muon or electron as efficiency as enough,we require in the generator level: For µ : Pt >= 4.0GeV |Eta|<=2.2 For e : Pt >= 4.0GeV |Eta|<=2.2
Generator Bc is generated with (pT≥10GeV,|eta|≤2) The production cross section is σ=10.6nb (including 11S0 ,13S0)
Generator Level Muon pT Cut Efficiency Bc→J/ψµν (J/ψ→µµ) |η|≤ 2.2
Generator (Ntuple) Simulation (OSCAR) Reconstruction (ORCA) Event Select Analysis Results
J/Ψ Selection Bc→J/Ψ+ lν (or π) J/Ψ→l+l- 2 leptons Pt ≥ 4.0 GeV 2 leptons share the same vertex 2 leptons have different charge 2 leptons’ invariant mass around the J/Ψ
Selection of the Lepton from Bc Bc→J/Ψ+ lν J/Ψ→l+l- Be identified as a muon or a electron Pt ≥ 4.0 GeV come from the same vertex (J/Ψvertex)
Bc SignalReconstructed Results J/ψ µ Mass (GeV/c2) M(µ+µ-) (GeV/c2) Bc→J/ψµν (J/ψ →µµ)
Bc SignalReconstructed Results µ from Bc directly 1/Ptrec – 1/Ptgene (GeV-1) Bc→J/ψµν (J/ψ →µµ)
Bc→J/ψπEvents Selection Study (1). J/Ψ Selection is as before. (2). for pion, we required: Be not identified as a lepton Pt ≥ 2 GeV Share the same vertex with 2 leptons (J/Ψ vertex)
Bc Signal Reconstructed Results M(µ+µ-) (GeV/c2) J/ψ π Mass (GeV/c2) Bc→J/ψ π (J/ψ →µµ)
Bc SignalReconstructed Results Bc π from Bc 1/Ptrec – 1/Ptgen (GeV-1) 1/Ptrec – 1/Ptgen (GeV-1) Bc→J/ψπ (J/ψ →µµ)
CERN INFN IHEP,BEIJING Backgrounds Study We don’t have enough computing power A series of Datasets of backgrounds we need are stored in CERN, CNAF, etc. LHC Computing Grid
Backgrounds Study The backgrounds which have been transmitted and studied by now includes: _
Backgrounds Study Number of Events in the integrated Luminosity of 10 fb-1 _
Backgrounds Study Bc signal After event select and CMS HLT, the effect of background B0s→ J/ψΦ(J/ψ→µµ) to the Bc channel Bc→J/ψπ(J/ψ→µµ)
Backgrounds Study After event select and CMS HLT, in the integrated Luminosity of 10 fb-1 , the background B0s→ J/ψΦ(J/ψ→µµ) V.S. Bc signal Bc→J/ψπ(J/ψ→µµ)
Summary (I) 1. Preliminary Events Select (for the search of Bc at the CMS experiment) 1. Bc→J/Ψlν(J/Ψ→l+l-) • Pt (lepton) ≥ 4.0GeV. • 3 leptons shared the same vertex. • The invariant mass of a pair of leptons (l+l-) which have different charges is around J/ψ. e.g. |M(µ+µ-) – M(J/ψ)|≤ 0.2GeV • For the uncertainty of the losing of neutrino, we take the range[3.0GeV,7.0GeV] as our signal region of J/ψl. • For CMS HLT, required: Single µ: Pt≥ 19GeV Double µ: Pt ≥ 7GeV • Single e: Pt≥ 29GeV Double e: Pt ≥ 17GeV 2. Bc→J/Ψπ(J/Ψ→l+ l-) • 2 leptons (from J/ψ) • Pt (lepton) ≥4.0GeV ,share the same vertex, have different charge • Invariant mass of the 2 leptons is around J/ψ • Pion selection • The particle is not identified as a lepton • Pt ≥ 2.0GeV , shares the same vertex of J/ψ • Pion candidate is isolated in the cone • 3) For CMS HLT.
Summary (II) 2. Number of Bc events available at the CMS experiment (S-wave)
Summary (III) 3. Bc study in CMS After our analysis of Bc signals and background ,for the channels Bc→J/Ψlν(J/Ψ→l+l-) , it’s believed we can distinguish the signals from the backgrounds efficiently. For the channels Bc→J/Ψπ(J/Ψ→l+ l-) ,we still need more detailed analysis of the properties of the π in order to distinguish the signals and backgrounds more efficiently. In a word, It’s believe that studying the Bc meson at the CMS experiment is very optimistic.
To do list • More backgrounds research: prompt J/Ψ etc. for Bc→J/Ψπ(J/Ψ→l+ l-) ,the more important background is B±→J/ΨK± ,now we have been starting to simulate this channel. • Research the Bc signals and backgrounds carefully, find out a better selection to distinguish the Bc signals from backgrounds . • Mass and lifetime fitting, error estimation.