1 / 15

Dalton ’ s Law

Dalton ’ s Law. Mixtures of Gases. Introduction. From the kinetic theory of gases, at a given temperature and in a given volume gas pressure depends only on the number of atoms colliding with the walls of the container the more collisions, the higher the pressure

torie
Download Presentation

Dalton ’ s Law

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dalton’s Law • Mixtures of Gases

  2. Introduction • From the kinetic theory of gases, at a given temperature and in a given volume • gas pressure depends only on the number of atoms colliding with the walls of the container • the more collisions, the higher the pressure • the fewer the collisions, the lower the pressure • Therefore, the larger the amount of gas in a container, the higher the pressure.

  3. Introduction • If we have a mixture of gases in our container • each different set of gas particles will contribute its own set of collisions • the identity of the individual gases is irrelevant. • This means that each gas will have its own pressure. • This pressure is called the partial pressure of the gas.

  4. Introduction • This was studied by Dalton who proposed the following law (Dalton’s Law of Partial Pressures): • “In a mixture of gases, the total pressure is the sum of the partial pressures of the gases.” • We use the equation: • Ptotal = P1 + P2 + P3 + ...

  5. Application • For example,In dry air we have: • 78.09% N2 • 20.95% O2 • The partial pressure of N2 is - • (0.7808)(101.3 kPa) = 79.11 kPa • The partial pressure of O2 is - • (0.2095)(101.3 kPa) = 21.22 kPa

  6. Application • For dry air in general:

  7. Example 1 A gas mixture containing oxygen, nitrogen, and carbon dioxide has PO2 = 20.1 kPa, PN2 = 18.3 kPa, and PCO2 = 34.4 kPa. What is Ptotal? • Ptotal = P1 + P2 + P3 • Ptotal = PO2 + PN2 + PCO2 • Ptotal = 20.1 kPa + 18.3 kPa + 34.4 kPa • Ptotal = 72.8 kPa

  8. Example 2 A gas mixture containing oxygen, nitrogen, and argon has a total pressure of 50.2 kPa. If PO2 = 20.1 kPa and PN2 = 18.3 kPa what is PAr? • Ptotal = P1 + P2 + P3 • Ptotal = PO2 + PN2 + PAr • PAr = Ptotal - PO2 - PN2 • PAr = 50.2 kPa - 20.1 kPa - 18.3 kPa • Ptotal = 11.8 kPa

  9. Water Vapor Pressure • Most often in chemistry we use Dalton’s law of partial pressure when we collect gas over water. • When we generate a gas in a chemical reaction, we often want to capture that gas. • Usually, we bubble the gas from the reaction into a water filled collection tube.

  10. Water Vapor Pressure • We can measure the volume of the tube directly. • And (after some adjustment), we can assume the pressure in the collection tube is the same as atmospheric pressure. • But, the gas in the tube has the gas we want andwater vapor.

  11. Water Vapor Pressure • We can use Dalton’s law of partial pressures to subtract out the water vapor so we know just the pressure of the gas we collected. • We use a water vapor pressure data table to determine the partial pressure of water at any given temperature.

  12. Water Vapor Pressure • A typical water vapor pressure table looks like this:

  13. Water Vapor Pressure • Patmosphere = Pwater + Pgas • Pgas = Patmosphere - Pwater

  14. Example 3 Hydrogen gas is collected over water at a temperature of 23.0°C with an atmospheric pressure of 754.2 mm Hg. What is the partial pressure of the hydrogen gas in the collection tube. • Patmosphere = 754.2 mm Hg • Pwater = 21.1 mm Hg (from table) • Patmosphere = Phydrogen + Pwater • Phydrogen = Patmosphere - Pwater • Phydrogen = 754.2 mm Hg - 21.1 mm Hg • Ptotal = 733.1 mm Hg

  15. Summary • Dalton’s Law of Partial Pressures: • “In a mixture of gases, the total pressure is the sum of the partial pressures of the gases.” • We use the equation: • Ptotal = P1 + P2 + P3 + ...

More Related