140 likes | 393 Views
Calculating the Variance –Covariance matrix. MGT 4850 Spring 2009 University of Lethbridge. Efficient Portfolios. Efficient frontier Black (1972) – convex combination of any two efficient portfolios, e.g. if we have two efficient portfolios we can find the whole efficient frontier.
E N D
Calculating the Variance –Covariance matrix MGT 4850 Spring 2009 University of Lethbridge
Efficient Portfolios • Efficient frontier • Black (1972) – convex combination of any two efficient portfolios, e.g. if we have two efficient portfolios we can find the whole efficient frontier. • Minimize portfolio variance, subject to defined return and sum of weights equal 1.
Transpose and Multiplication • Weights - column vector Γ (row vector ΓT) • Returns - column vector E (row vector ET) • Portfolio return ET Γ • 25 stocks portfolio varianceΓTSΓ ΓT(1x25)*S(25x25)* Γ(25x1) • To calculate portfolio variance we need the variance/covariance matrix S.
variance/covariance matrix • Using Excess Returns • Return data for variance-covariance 295 • Excess return matrix A and its transpose AT for the calculation of S matrix • AT A/(M-1) → S (p. 292).
VBA (optional) Function VarCovar(rng As Range) As Variant Dim i As Integer Dim j As Integer Dim numCols As Integer numCols = rng.Columns.Count Dim matrix() As Double ReDim matrix(numCols - 1, numCols - 1) For i = 1 To numCols For j = 1 To numCols matrix(i - 1, j - 1) = Application.WorksheetFunction.Covar(rng.Columns(i), rng.Columns(j)) Next j Next i VarCovar = matrix End Function
variance/covariance matrix 299 • Offset Function → returns a reference to a range that is a given number of rows and columns for a given reference