230 likes | 249 Views
Explore the use of Symbolic Computation to enhance Dynamic Geometry, solving problems and discovering geometric properties.
E N D
Bringing More Intelligence to Dynamic Geometry by Using Symbolic Computation Francisco BotanaUniv. Vigo (Spain) http://webs.uvigo.es/fbotana
Outline • DG problems: continuity, loci, proof • GDI (Intelligent Dynamic Geometry) • (partial) Solutions to DG problems • webDiscovery: breaking up the Algebra and Geometry parts • Intercommunication
GDI(discovering) The triangle ABX: 1.- Is impossible 2.- Is isosceles 3.- Is equilateral 4.- Is a right triangle 5.- None of the above
webDiscovery(An Euler’s formula) Midpoint(X1,A,B) Midpoint(X2,A,C) Aligned(X3,A,B) Aligned(X4,A,C) Aligned(X5,B,C) Perp(A,B,X1,Ci) Perp(A,C,X2,Ci) Perp(A,B,I,X3) Perp(A,C,I,X4) Perp(B,C,I,X5) d(I,X3)=d(I,X4) d(I,X3)=d(I,X5)
webDiscovery(An Euler’s formula) Use R::=Q[hu[5..10]drc]; Elim(h..u[10],Ideal(h u[6]-1, d^2-((u[9]-u[7])^2+(u[10]-u[8])^2), r-u[8], c^2-(u[9]^2+u[10]^2), 2u[9] - 1, ... )); Ideal(1/2d^4 - d^2c^2 - 2r^2c^2 + 1/2c^4) -------------------------------
Intercommunication {1} Point(-31,227)[hidden]; {2} Point(590,227)[hidden]; {3} Point(206,107); {4} Point(296,107); {5} Line(2,1)[black]; {6} Segment(4,3)[black]; {7} Point on object(5,0.32528180)[label('A')]; {8} Point on object(5,0.58454108)[label('B')]; {9} Circle by radius(7,6)[black]; {10} Circle by radius(8,6)[black]; {11} Intersect2(10,9)[traced,label('P')];
Intercommunication nash.sip.ucm.es/CabriOM
References http://webs.uvigo.es/fbotana Thank you.