1 / 28

SiO 2

Démouillage. Film mince de Si. Nanostructures de Si. SiO 2. Si. Recuit (T>800 o C). Si(100) “SOI”. h si. SiO 2. Si. h si 5, 10, 20 nm. <130>. The end product: nanoislands are semi-organized. (100). (130). (150). (150). (100). (150). (130). (100). 10 μ m.

tovah
Download Presentation

SiO 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Démouillage Film mince de Si Nanostructures de Si SiO2 Si Recuit (T>800oC) Si(100) “SOI” hsi SiO2 Si hsi 5, 10, 20 nm

  2. <130> The end product: nanoislands are semi-organized (100) (130) (150) (150) (100) (150) (130) (100) 10 μm

  3. Surface energy driven kinetics of SOI dewetting LEEM / KMC A~t0.5 (Srolovitz et al. JAP, 1986) A (μm2) Area (μm2) A~t0.8 (Wong et al. Acta Mat., 2000) t (arb. unit) t (s) Kinetic Monte Carlo simulations LEEM • SOS square lattice (3ML thick film) Si(001) Surface Energy driven • T=860°C • First neighbors interaction • H=21±2 nm • Substate/Film interaction • Diffusion limited kinetics Continuum models Nucleation on facet based model A~t(Pierre-Louis et al., PRL, 2009)

  4. Front velocity anisotropy versus local rim height 32±3 nm 29±3 nm Map of front position versus time (LEEM) Rim height (AFM) • Rim centers thicken and slow down (v ~ t-0.5) • Void fingers exhibit constant velocity Void fingers have constant rim height

  5. Steady state dewetting of <110> front The <110> front velocity is stable and fingers are organized <110> Vfront = 49±2 nm/s (T=900°C)

  6. AFM versus KMC at the void finger tip AFM KMC Height (ML) z (μm) x (atomic unit) x (μm)

  7. Receeding front J B Si film h A J=-D.grad (c) L SiO2 Es/kTh ceq,A≈ ceq,Be Es/kTh DΩ ceq,B (e -1) Vfinger~ hL Finger void velocity model/experiment Side view Top view Accumulated Si Si rim Si film ceq,A> ceq,B B A Void finger Receeding front 12nm 6nm 6 nm 8nm h=21nm Danielson PhD (MIT, USA) 21 nm Es: adsorbate-substrate excess energy

  8. The thermal activation barrier to dewet Receeding front J B Si film h A L SiO2 Side view Top view Void finger speed Accumulated Si Si rim ceq,A> ceq,B Si film B A Void finger Receeding front Ea=2.0±0.2 eV Barrier surface smoothing on Si(100): Ea=2.3±0.1 eV (T=800-1100oC)* Void fingers *M.E. Keeffe, J. Phys. Chem. Solids (1994) Es: adsorbate-substrate excess energy Ea: activation energy

  9. Dynamics of solid state dewetting: straight fronts a model system for dewetting

  10. <110>- and <100>- Si/SiO2 straight fronts H=21 nm; T=804oC (84.7 min) Lithography e- LEEM <100> (Plateforme Planete C’Nano PACA) Unstable front 500 m Optical Microscopy 15 µm Atomic Force Microscopy <110> <110> 60 m Cheynis et al., accepted PRB 2011 <100> 1D profile Stable front Z (m) 5 m 0 0.18 m 7 m -0.2 7 m

  11. Stable front: evidence of a facetted rim in situ LEEM Si rim SiO2 Rim profile of stable front is facetted 15 µm • Experiment: • exp=0.35±0.05 • Theory: • theory=7/220.32 • Pierre-Louis et al. PRL 2009 • Dufay et al. PRL 2011 =0.38±0.05 T=970°C Rim displacement:xt Si =0.31±0.05 Si T=825°C • Leroy et al. En preparation

  12. 0s 1250s 4 µm Aire (μm2) t (s)

  13. Aire (μm2) t (arb. unit)

  14. Height (ML) z (μm) x (μm) x (unité atomique)

  15. Vue de dessus Vue de côté Recul du front Si accumulé Bourrelet de Si J ceq,A> ceq,B B B A h A Film de Si Void finger L Film de Si SiO2 Recul du front

  16. Lithographie Microscopie Optique PMMA Si SiO2 Si (wafer) faisceau e- 500 m Microscopie à force atomique Gravure du Si 1D profile Z (m) 5 m 0 « Lift off » 0.18 m 7 m -0.2 <110> 60 m 7 m <100>

  17. 4 µm trou carré doigt nanostructure

  18. Nucléation hétérogène fronts <110> Tranchée Film de Si démouillé Film de Si 5 µm 0 min 140 µm Front stable <110> 530 µm Front instable <100> 100 µm 670 µm 24 min

  19. 3 2 Déplacement du front (µm) 1 0 0 20 40 60 temps (min) x =0.38±0.05 T=970°C =0.31±0.05 T=825°C t

  20. <100> Bourrelet de Si SiO2 <110> 15 µm

  21. <100> Bourrelet de Si 15 µm SiO2 <110> 1 200 Croissance (couche/couche) 100 0 10 0 0 0 10 20 30 40 50 60 temps (min)

  22. Comportement moyen (1x2) (2x1) • ∆t =0.36 min/monolayer ~ 22 s/monolayer • ∆t(1x2)=26.1 s/monolayer ∆t(2x1)=17.4 s/monolayer • ∆t (1x2) / ∆t (2x1) =1.5

  23. in situ LEEM t= 25s 2.5 µm ex situ AFM (2020 µm) 0.25 µm -0.1 µm Lateral Instability: new branch

More Related