1 / 29

a 0 (980) – f 0 (980) Mixing

a 0 (980) – f 0 (980) Mixing. Vera Kleber. Institut für Kernphysik Forschungszentrum Jülich. Physikalisches Institut Universität Bonn. Outline. Introduction Properties of a 0 (980)/f 0 (980) Experiments with a 0 (980)/f 0 (980) a 0 (980)-f 0 (980) Mixing Program at COSY Outlook.

tracey
Download Presentation

a 0 (980) – f 0 (980) Mixing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. a0(980) – f0(980) Mixing Vera Kleber Institut für Kernphysik Forschungszentrum Jülich Physikalisches Institut Universität Bonn

  2. Outline Introduction Properties of a0(980)/f0(980) Experiments with a0(980)/f0(980) a0(980)-f0(980) Mixing Program at COSY Outlook

  3. Nonet of pseudo scalar mesons JP=0- S K0 K+ 1 h p- p0 p+ -1 h 1 I -1 K- K0 The Pseudo Scalar Resonances

  4. f0(500) (““) k(800) f0(980) a0(980) f0(1370) K0*(1430) a0(1450) f0(1500) f0(1710) Nonet of light scalar mesons JP=0+ S K0*(?) K0+*(?) 1 a0-(?) a00(?) f0(?) a0+(?) f0(?) -1 1 I -1 K0-*(?) K0*(?) The Light Scalar Resonances Possible candidates PDG, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

  5. a0(980)/f0(980) Nature What is their nature? qq state or 4 quark state or KK molecule A.V. Anisovich et al., Eur. Phys. J A 12 (2001) 103 D. Morgan, M.R. Pennington, Phys. Rev. D 48 (1993) 1185 N.N. Achasov et al., hep-ph/0201299 R.J. Jaffe, Phys. Rev. D 15 (1977) 267 J.A. Oller, E. Oset, Nucl. Phys. A 620, (1997), 438 G. Janssen et al., Phys. Rev. D 52 (1995) 2690 J. Weinstein, N. Isgur, Phys. Rev. D 41 (1990), 2236

  6. The a0(980) Resonance a0(980) IG(JPC) 1-0++ Mass 984.7 ± 1.2 [MeV] Width 50 – 100 [MeV] Decays dominantph seenKK seengg PDG, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

  7. The f0(980) Resonance f0(980) IG(JPC) 0+0++ Mass 980 ± 10 [MeV] Width 40 – 100 [MeV] Decays dominantpp seenKK seengg PDG, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

  8. The a0(980) and f0(980)Resonance ds √(G0Gph)Mr 2 = C dM Mr2-M2-iMr(Gph+GKK) Gph = gphq below threshold: GKK = igKK√(MK2 – (M/2)2) above threshold: GKK =gKK√((M/2)2 - MK2) E. Bratkovskaya et al., J. Phys. G 28 (2002) 2423

  9. Experiments: Inclusive pp→ d X+ Data LBL p p → d X+ pp = 3.8, 4.5, 6.3 GeV/c M.A. Abolins et al., PRL 25 (1970) 469

  10. Experiments: Radiative f-Decays KLOE @ DAfNE e+e- → f → p0p0g 75 f→ (f0(980) + s) g f→ f0(980) g 50 dBR/dm x 108 (MeV-1) f→sg Interf. 25 0 400 600 800 1000 m(pp) (MeV) A. Aloisio et al., Phys. Lett. B 537 (2002) 21

  11. Experiments: f1(1285) Decays L3 @ LEP e+e-→ e+e-gg → e+e-f1(1285) → e+e-hp+p- → e+e-ggp+p- f1(1285) a0(980) BW-Fit M= 98546 G= 50134 L3 Collaboration, Phys. Lett. B 526 (2002) 269

  12. Experiments: pp annihilation Crystal Barrel @ LEAR pp→ KLK+/-p-/+ Flatté m= 9823 G= 928 g1= 324 15 g2/g1= 1.01 K*(892) 2 KLK+/- 600 a0(1320) a0(980) a0(1450) 1.5 400 m2(K+p-/K-p+) / GeV2 entries / 0.0186 GeV2/c2 a0(980) 1 200 0.5 a0(1320) a0(1450) theoretical Dalitz Plot (from best fit of PWA) 0 1.4 0.5 1 1.5 2 1 1.2 1.6 m2(KLp+/KLp-) / GeV2 m2(KLK+/KLK-) / GeV2 A. Abele et al., Phys. Rev. D 57 (1998) 3860

  13. Experiments: J/Ψ Decays BES @ BEPC e+e-→J/Ψ→ f p+p- e+e-→J/Ψ→ f K+K- Flatté m= 96586 g1= 1651015 g2/g1= 4.21 0.25 0.21 f‘2(1525) f0(980) f2(1270)/ f0(1370) f0(980) M. Ablikim et al., hep-ex/0411001

  14. a0(980) f0(980) gh=gph2/8pm2 R=gKK2/gph2 gp=gpp2/8pm2 R=gKK2/gpp2 V. Baru et al., nucl-th/0410099 V. Baru et al., nucl-th/0410099 a0(980)/f0(980) Nature What is their nature? qq state or 4 quark state or KK molecule Which observable to measure at COSY? → a0(980)- f0(980) mixing amplitude

  15. a0(980)-f0(980) Mixing • idea similar to dd  ap0 experiment @IUCF • search for a reaction forbidden due to isospin conservation: dd  aa00(980) ( p0h) • allowed due to isospin conservation: dd  af0(980) ( pp) • a0(980)-f0(980) mixing: dd  af0(980) aa00(980) a p0h

  16. a0(980)-f0(980) Mixing • pilot measurement at ANKE: our estimate: s(dd  a f0(980)  a K+K–)~ 400 pb • strength of a0(980)-f0(980) mixing unknown • isospin violating reaction at WASA: our estimate: s(dd  a a00(980)) ~ (50 ... 200) pb Close & Kirk: mixing intensity = 8±3% but critizised by Achasov & Kiselev, Oller

  17. p0 h p0 h a0 a a ~ ≈ a0 1 1 f0 << p0 p0 h t -mNma0/f0 d d d d 1 ~ ma0/f0Ga0/f0 p0 a a h  mN Propagation p0 ( ) ) ( ≈ ≈ 20 CSB Ga0/f0 Production d d d d Details: C.Hanhart, nucl-th/0306073 dd  p0 vs. dd   (p0h) propagation of a0/f0 production CSB in or p0/h

  18. a0(980)- f0(980) Mixing-Amplitude Isospin violation reaction: dd → af0→ aa0→ ap0h ds/dm~ |L(m)|2 * |A|2 mph • ~ i gf0KKga0KK √s(pK –pK) → kaonic contribution mK02 – mK+2 md – mu L ~ √( ) = √( ) K+ K0 f0 a0 f0 a0 mK02 + mK+2 (md + mu)/2+ ms - L = + others K– K0 • additional measurement: • dd →aK+K- N.N. Achasov et al., Phys. Lett. B 88, 367 (1979)

  19. ~ 30 km ~ 50 km Aachen Köln ~ 70 km Bonn Forschungszentrum Jülich

  20. COSY Jülich Meson Production pp → pp X m(X) < 1.1 GeV/c2 pp → d X dd →aX

  21. COSY Jülich Isospin I(I3) 1(½,½) → 1(½,½,0) 1(½,½) → 1(0,1) 0(0,0) → 0(0,0) Meson Production pp → pp X m(X) < 1.1 GeV/c2 pp → d X dd →aX

  22. a0(980) Production near Threshold pp → da0+(980) →dK+K0 → dp+h Tp = 2.65 GeV QKK = 48 MeV Tp = 2.83 GeV QKK = 105 MeV ANKE

  23. Identification of pp  dp+h P. Fedorets et al., accepted by Yad. Fiz. (Phys. At. Nucl.)

  24. Ratio 10-1 ANKE Tp = 2.65 GeV Q = 48 MeV 10-2 0 0.1 0.2 0.3 Q [GeV] Branching Ratio a0+ → (K+K0) / (π+η) model dependent BR = (2.9 ± 0.8stat ± 0.9sys) % BR = (23 ± 5) % • Abele et al., • Phys. Rev. D 57, • 3860 (1998) P. Fedorets et al., accepted by Yad. Fiz. (Phys. At. Nucl.)

  25. Identification of pp  dK+K0

  26. Fit: [(KK)Pd]S+ [(KK)Sd]P stot(pp → dK+K0) = (38 ± 2stat± 14sys) nb Differential Distributions for pp  dK+K0 T =2.65 GeV (Q =48 MeV) →83% a+0 channel V.Kleber et al., Phys. Rev. Lett. 17, 172304

  27. pp  dK+K0 at Higher Energy T =2.83 GeV (Q =105 MeV) preliminary ndf2 = 2.5 black: best fit (in acc.) green: initial distrib. red: KK s-wave contrib. blue: KK p-wave distrib. →85% a+0 channel cos (pK+)

  28. Outlook dd  a K+K- @ ANKE • reaction serves as isospin I=0 filter • isospin conservation: f0 Planned measurements: dd →a π0η @ WASA • forbidden if isospin is • conserved • mixing f0n a0 Goals: • Goals: • cross section (dσ/dm) • dσ/dm (dd → απ0η ) • dσ/dm (dd →αK+K-) • → |mixing amplitude|2

  29. … What You Should Have Learned … Introduction Properties Experiments a0-f0 Mixing Program at COSY Outlook } → internal structure unknown → from mass distributions: 2 out of 3 unknowns (M and g22/g12 ) } → contains information on internal structure → another reaction to study CSB

More Related