1 / 26

Latent Growth Curve Models

Latent Growth Curve Models. Patrick Sturgis, Department of Sociology, University of Surrey. Overview. Random effects as latent variables Growth parameters Specifying time in LGC models Linear Growth Non-linear growth Explaining Growth Fixed and time-varying predictors

trapper
Download Presentation

Latent Growth Curve Models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Latent Growth Curve Models Patrick Sturgis, Department of Sociology, University of Surrey

  2. Overview • Random effects as latent variables • Growth parameters • Specifying time in LGC models • Linear Growth • Non-linear growth • Explaining Growth • Fixed and time-varying predictors • Benefits of SEM framework

  3. SEM for Repeated Measures • The SEM framework can be used on repeated measured data to model individual growth trajectories. • For cross-sectional data latent variables are specified as a function of different items at the same time point. • For repeated measures data, latent variables are specified as a function of the same item at different time points.

  4. E1 E2 E3 E4 1 1 1 1 Constrain factor loadings Estimate factor loadings X11 X12 X13 X14 LV A Single Latent Variable Model same item at 4 time points 4 different items Estimate mean and variance of underlying factor Estimate mean and variance of trajectory of change over time

  5. Repeated Measures & Random Effects • We have average (or ‘fixed’) effects for the population as a whole • And individual variability (or ‘random’) effects around these average coefficients

  6. Random Effects as Latent Variables • In LGC: • The mean of the latent variable is the fixed part of the model. • It indicates the average for the parameter in the population. • The variance of the latent variable is the random part of the model. • It indicates individual heterogeneity around the average. • Or inter-individual difference in intra-individual change.

  7. Growth Parameters • The earlier path diagram was an over-simplification. • In practice we require at least two latent variables to describe growth. • One to estimate the mean and variance of the intercept. • And one to estimate the mean and variance of the slope.

  8. Specifying Time in LGC Models • In random effects models, time is included as an independent variable: • In LGC models, time is included via the factor loadings of the latent variables. • We constrain the factor loadings to take on particular values. • The number of latent variables and the values of the constrained loadings specify the shape of the trajectory.

  9. 1 2 1 3 1 1 1 0 A Linear Growth Curve Model Constraining values of the intercept to 1 makes this parameter indicate initial status Constraining values of the slope to 0,1,2,3 makes this parameter indicate linear change

  10. 1 2 1 3 1 1 1 0 Quadratic Growth E1 E2 E3 E4 X1 X2 X3 X4 Add additional latent variables with factor loadings constrained to powers of the linear slope 9 4 1 0 SLOPE ICEPT QUAD

  11. File structure for LGC • For random effect models, we use ‘long’ data file format. • There are as many rows as there are observations. • For LGC, we use ‘wide’ file formats. • Each case (e.g. respondent) has only one row in the data file.

  12. A (made up) Example • We are interested in the development of knowledge of longitudinal data analysis. • We have measures of knowledge on individual students taken at 4 time points. • Test scores have a minimum value of zero and a maximum value of 25. • We specify linear growth.

  13. 1 2 1 3 1 1 1 0 Linear Growth Example mean=11.2 (1.4) p<0.001 variance =4.1 (0.8) p<0.001 mean=1.3 (0.25) p<0.001 variance =0.6 (0.1) p<0.001

  14. Interpretation • The average level of knowledge at time point one was 11.2 • There was significant variation across respondents in this initial status. • On average, students increased their knowledge score by 1.2 units at each time point. • There was significant variation across respondents in this rate of growth. • Having established this descriptive picture, we will want to explain this variation.

  15. Explaining Growth • Up to this point the models have been concerned only with describing growth. • These are unconditional LGC models. • We can add predictors of growth to explain why some people grow more quickly than others. • These are conditional LGC models. • This is equivalent to fitting an interaction between time and predictor variables in random effects models.

  16. Do men have a different initial status than women? Do men grow at a different rate than women? 1 2 1 3 1 1 1 0 Gender (women = 0; men=1) Time-Invariant Predictors Does initial status influence rate of growth?

  17. Time-varying predictors of growth

  18. Why SEM? • Most of this kind of stuff could be done using random/fixed effects. • SEM has some specific advantages which might lead us to prefer it over potential alternatives: • SPSS linear mixed model • HLM • MlWin • Stata (RE, FE)

  19. Fixed Effects/Unit Heterogeneity • A fixed effects specification removes ‘unit effects’ • This controls for all observed and unobserved invariant unit characteristics • Highly desirable when one’s interest is in the effect of time varying variables on the outcome • This is done by allowing the random effect to be correlated with all observed covariates • Downside=no information about effect of time invariant variables, possible efficiency loss • SEM allows various hybrid models which fall between the classic random and fixed effect specifications

  20. Random effect model b b b b

  21. Fixed effect model b b b b

  22. Hybrid model Remove equality constraint on beta weights b b b b Allow correlated errors Z Introduce Time-Invariant Covariate that has indirect Effect on X

  23. Multiple Indicator LGC Models • Single indicators assume concepts measured without error • Multiple indicators allow correction for systematic and random error • Reduced likelihood of Type II errors (failing to reject false null) • Tests for longitudinal meaning invariance • Allows modeling of measurement error covariance structure

  24. Multiple Indicator LGC Models

  25. Other Benefits of SEM • Global tests and assessments of model fit • Full Information Maximum Likelihood for missing data • Decomposition of effects – total, direct and indirect • Probability weights • Complex sample data

  26. E5 E1 E2 E6 E7 E3 E4 E8 1 1 1 1 1 1 1 1 X1t1 Y1t1 X1t2 Y1t2 X1t3 Y1t3 X1t4 X1t4 1 2 1 2 1 1 1 3 1 1 3 1 1 0 ICEPT2 SLOPE1 SLOPE2 ICEPT1 0 1 Multiple Process Models Does rate of growth on one variable influence rate of growth on the other? Does initial status on one variable influence development on the other?

More Related