1 / 13

Chapter 2 Determinant

Chapter 2 Determinant. Chapter 2 行列式 Determinant. § 2-1 二階行列式. § 2-2 高階行列式. Define: A=nxn, A 之 determinant, det(A), 可遞迴定義如下:. (1) If n=1,. (2) If n=2,. submatrix. Property:. If: By induction on n: “induction” 歸納法”. (2) 假設 n=k 成立,接下來要証明 n=k+1 也成立:. consider n=k+1:. Let.

tress
Download Presentation

Chapter 2 Determinant

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 2Determinant

  2. Chapter 2 行列式 Determinant § 2-1 二階行列式 § 2-2 高階行列式 Define: A=nxn, A之determinant, det(A), 可遞迴定義如下: (1) If n=1, (2) If n=2, submatrix

  3. Property:

  4. If: By induction on n: “induction”歸納法” (2) 假設n=k成立,接下來要証明n=k+1也成立: consider n=k+1: Let

  5. § 2-3 行列式之性質 Note: (1) if A具有零列(行) (2) If A is upper triangular, then (3) If A is lower triangular, then (4) Property: 列運算對行列式的影響 example: hint: 作列運算至上三角,

  6. Property: Note: R:列基本矩陣; (4) If E: 基本矩陣 Lemma: A: nxn (1) if E: 列基本矩陣 (2) If E: 行…… if Lemma: E: 基本矩陣 if: Lemma: A: nxn, E:基本矩陣(不分行列) if: 純量可交換

  7. Theorem: if A: nxn, If: A: 可逆 A is nousingular Theorem: A: nxn, A:可逆 0 0 0 0 must be zero

  8. Theorem: (The most important theory is this section) If: (1) 若B可逆 (2)若B不可逆 (等號右邊永遠是0,所以只要 証明等號左邊一定是0就可) singular 只要証明AB是不可逆就可以了。 if AB不可逆,then AB is singular Note: are scalars, they can be interchanged. example:

  9. (5) if Note 8: where A is nxn example: (96成大資工) 証A is singular A: nxn, n: odd, 若 if: must be zero A is singular example: (96清大) if

  10. (Sol)

  11. example: (Vandermonde)很有名的矩陣 for example: if: By induction on n: (n至少要從n開始)

  12. Theorem: (“方塊矩陣的行列式”) 方塊上(下)三角的例子

  13. if: 如何拆求是issue!例如: Note:

More Related