1 / 33

a- INFN Sezione di Roma b- ENEA – CR Casaccia

T r ansition Radiation Detector Gas Slow Control System AMS-02 A. Bartoloni a , B.Borgia a , S. Gentile a G. Amelino Camelia a , S. Baccaro b , C. Bosio a , C. Gargiulo a , G. La Neve c , A. Paolozzi c , P. Rapagnani a ,E. Valente a. a- INFN Sezione di Roma b- ENEA – CR Casaccia

treva
Download Presentation

a- INFN Sezione di Roma b- ENEA – CR Casaccia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transition Radiation DetectorGas Slow Control SystemAMS-02A. Bartolonia, B.Borgiaa, S. GentileaG. Amelino Cameliaa, S. Baccarob, C. Bosioa, C. Gargiuloa, G. La Nevec, A. Paolozzic, P. Rapagnania ,E. Valentea a- INFN Sezione di Roma b- ENEA – CR Casaccia c- Dip. Ing. Aerospaziale , Università “La Sapienza” Roma

  2. Gas System Slow Control TRD GAS SYSTEM TRD Box-S Box-C MANIFOLD Ctrl&Mon Signals UGM modules Power Supply Gas Mixture HV Safety Signal to U Crate UGE-crate JMDC Monitoring and Control Computer USCM UGBC board UGBS board UGM boards CAN-BUS 1553 SRDL (NASA Avionics) UGpd-box Ctrl DC-DC converters PDB 120VDC 28VDC Filter

  3. UGE crate prototypes UGE CRATE • 11 Boards 6U height (AMS VME type) • 2 slots USCM dedicated • 9 slots for control boards • All control boards use FPGA to interface • the USCM bus and to pilot the device drivers • 2 boards to control the BOX-S (UGBS) • 13 solenoid valves • 4 press. & temp. sensors • 2 boards to control the BOX-C (UGBC) • 2 circulation pumps • 4 solenoid valves • 3 flipper valves • 3 press. & temp. sensors • 1 CO2 analyzer (RS232) • 1 MCA (RS232) • 1 monitor tubes • 1 board for BOX-C monitor tubes power supply(UHVG) • 4 boards for Manifold control • 4 to control the 164 flipper valves located in the manifolds (UGFV-AC., UGFV-BD) • logics for 82 pressure sensor signals multiplexing will be inserted in the UGFV boards Backplane board UGBS’ UGBS USCM’ USCM UGFV-BD + Mux-PB UHVG UGBC UGFV-AC + Mux-PA UGFV-BD’ + Mux-PB UGFV-AC’ + Mux-PA UGBC’ hot boards cold boards

  4. Prototypes developments • boards electrical schematic ready • the whole functionalities addressed • basic control circuits simulated (PSPICE) • complex functionality components taken from the AMS preferred part list • simpler components (MOSFET) selected using derating criteria • firm selected for PCBs design and production (ProSer S.r.l.) • UGBC board ready (yesterday !!) • UGBS board PCB developed (expected ready next week) • UGFV & UGM module PCBs in development (expected ready in August) • backplane schematics in development (released after 25-7-02) Project Status

  5. UGBC interface to BOX-C Tasks: • switch on/off and regulate speed of circulation pumps • open the valves • test the status of the valves • monitor pressure and temperature sensor • emergency open of safety valves without USCM intervention • manage emergency in case of massive gas leak Redundancy: • hot & cold (hot & hot will be evaluated against power budget) • no duplication of control circuits on the same board

  6. UGBC

  7. Front panels

  8. Address(7:0) , RW, ST, AKN, ….. Data(15:0) • All boards use the same USCM I/O BUSinterfacelogic: • LVDS Receiver • LVDS Driver • A54SX32A FPGA (PQFP 208) • VHDL is used to describe FPGA logic • The ACTEL development environment is used • Libero Software • Silicon Sculptor • Silicon Explorer LVDS REC. LVDS DRIV. A54SX32A JTAG Board I/O

  9. UGE backplane using Le Croy bus USCM’ USCM UGBS UGBS’ UGBC UGBC’ UHVG’ UHVG UGFV AC UGFV AC’ UGFV BD UGFV BD’

  10. UHVG address backplane USCM DIO16+ (ADD0+) DIO16- (ADD0-) DIO17+ (ADD1+) DIO17- (ADD1-) USCM’ DIO16+ (ADD0+) DIO16- (ADD0-) DIO17+ (ADD1+) DIO17- (ADD1-) UHVG pCLKA nCLKA pCLKB UHVG’ nCLKB 100Ώ 100Ώ Backplane

  11. UHVG data backplane USCM DIO0+ (DATA0+) 100Ώ 100Ώ DIO0- (DATA0-) DIO1+ (DATA1+) DIO1- (DATA1-) USCM’ DIO0+ (DATA0+) DIO0- (DATA0-) DIO1+ (DATA1+) DIO1- (DATA1-) UHVG pDataA nDataA pDataB UHVG’ nDataB 100Ώ 100Ώ Backplane

  12. UGxx controls backplane USCM UST+, DIO2+ (RESET+) UST-, DIO2- (RESET-) BGO+ (UST+), DIO3+ (RESET+) BGO- (UST-), DIO3- (RESET-) USCM’ UST+, DIO2+ (RESET+) UST-, DIO2- (RESET-) BGO+ (UST+), DIO3+ (RESET+) BGO- (UST-), DIO3- (RESET-) UGxx STR+, RESET+ STR-, RESET- UGxx’ STR+, RESET+ STR-, RESET- 100Ώ 100Ώ Backplane

  13. UGxx controls (ACK) backplane USCM ACK+ 100Ώ 100Ώ ACK- BRI+ (ACK+) BRI- (ACK-) ACK+ USCM’ ACK- BRI+ (ACK+) BRI- (ACK-) UGxx ACK+ ACK- UGxx’ ACK+ ACK- Backplane

  14. UGxx address backplane USCM DIO+[18:20] (ADD+[2:4]) DIO-[18:20] (ADD-[2:4]) DIO+[21:23] (ADD+[5:7]) DIO-[21:23] (ADD-[5:7]) USCM’ DIO+[18:20] (ADD+[2:4]) DIO-[18:20] (ADD-[2:4]) DIO+[21:23] (ADD+[5:7]) DIO-[21:23] (ADD-[5:7]) UGxx ADD+(0:1), AddParityBit ADD-(0:1), AddParityBit UGxx’ ADD+(0:1),AddParityBit ADD-(0:1),AddParityBit 100Ώ 100Ώ Backplane

  15. UGxx data backplane USCM DIO+[4:9] (DATA+[4:9]) 100Ώ 100Ώ DIO-[4:9] (DATA-[4:9]) DIO+[10:15] (DATA+[10:15]) DIO-[10:15] (DATA-[10:15]) DIO+[4:9] (DATA+[4:9]) USCM’ DIO-[4:9] (DATA-[4:9]) DIO+[10:15] (DATA+[10:15]) DIO-[10:15] (DATA-[10:15]) UGxx DATA+(0:4),DataParityBit DATA-(0:4),DataParityBit UGxx’ DATA+(0:4),DataParityBit DATA-(0:4),DataParityBit 100Ώ 100Ώ Backplane

  16. UGxx I/O protocol Command Write Cycle Command Read “Back” Cycle UST ACK Depending on the command 0 to 3 Write or Read cycle Could happen. In case of writes a Read cycle at the end will flag the USCM that all is OK UGxx Address ADD(1:0) UGxx Address AddParityBit Command Command DATA(4:0) DataParityBit USCM : Put UGxx Address, Command, Parity bits on bus USCM : flags Ugxx setting UST UGxx (ALL) : Latch Data on the bus UGxx (ALL) : Decode Address Add. UGxx : Flag USCM setting ACK USCM : Release Bus USCM : Reset UST Add Ugxx : Reset ACK USCM : Put UGxx Address, AddParity USCM : flags Ugxx setting UST UGxx (ALL) : Latch Add on the bus UGxx (ALL) : Decode Address Add. UGxx : Put Rx Cmd + Parity on the Bus Add. UGxx : Flag USCM setting ACK USCM : Latch DataBus USCM : Reset UST Add Ugxx : Reset ACK The addressed Ugxx will replay to this read request only if all is OK during the previous write cycle (parity checking, cmd decoding). no replay means also that command it is not executed by the UGxx

  17. UGBC commands -- Data Function -- 00000 Reserved -- 00001 Write MV100 Enable Register (1W) -- 00010 Read MV100 Enable Register (1R) -- 00011 Write Open Time Register (3W) -- 00100 Read Open Time Register (3R) -- 00101 Write Pump Enable&Speed Register (1W) -- 00110 Read Pump Enable&Speed Register (1R) -- 00111 Write MCA select Register (1W) -- 01000 Read MCA select Register (1R) -- 01001 Read Current Status Register (3R) -- 01010 Read Event Status Register (3R) -- 01011 Open Valve V6a (0) -- 01100 Open Valve V6b (0) -- 01101 Open Valve V18a (0) -- 01110 Open Valve V18b (0) -- 01111 Open Valve V6a and V18a (0) -- Data Function -- 10000 Open Valve V6b and V18b (0) -- 10001 Open Valve V8a (0) -- 10010 Close Valve V8a (0) -- 10011 Open Valve V8b (0) -- 10100 Close Valve V8b (0) -- 10101 Activate HV Safety Signal (1W) -- 10110 Read P4 value (3R) -- 10111 Read T4 value (3R) -- 11000 Read P5 value (3R) -- 11001 Read T5 value (3R) -- 11010 Read P6 value (3R) -- 11011 Read T6 value (3R) -- 11100 Read CP1 current (3R) -- 11101 Read CP2 current (3R) -- 11110 Write RS232 register (1W) -- 11111 Read RS232 register (1R)

  18. UGBS commands -- Data Function -- 00000 Reserved -- 00001 Write MV100 Enable Register (3W) -- 00010 Read MV100 Enable Register (3R) -- 00011 Write Open Time Register (3W) -- 00100 Read Open Time Register (3R) -- 00101 Read El. Current Status Register (3R) -- 00110 Read El. Event Status Register (3R) -- 00111 Read Mech. Event Status Register (3R) -- 01000 Read Mech. Event Status Register (3R) -- 01001 Open Valve V1a (0) -- 01010 Open Valve V’1a (0) -- 01011 Open Valve V1b (0) -- 01100 Open Valve V’1b (0) -- 01101 Open Valve V2a (0) -- 01110 Open Valve V2b (0) -- 01111 Open Valve V3a (0) -- Data Function -- 10000 Open Valve V3b (0) -- 10001 Open Valve V4 (0) -- 10010 Open Valve V’4 (0) -- 10011 Open Valve V5 (0) -- 10100 Open Valve V20a (0) -- 10101 Open Valve V20b (0) -- 10110 Open Valve V20a and V20b (0) -- 10111 Read P1A value (3R) -- 11000 Read T1A value (3R) -- 11001 Read P1B value (3R) -- 11010 Read T1B value (3R) -- 11011 Read P2A value (3R) -- 11100 Read T2A value (3R) -- 11101 Read P2B value (3R) -- 11110 Read T2B register (3R) -- 11111 Reserved

  19. UGFV commands -- Data Function -- 00000 Reserved -- 00001 Write PS Enable Register (1W) -- 00010 Read PS Enable Register (1R) -- 00011 Open On Module 1 (3W) -- 00100 Close On Module 1 (3W) -- 00101 Open On Module 2 (3W) -- 00110 Close On Module 2 (3W) -- 00111 Open On Module 3 (3W) -- 01000 Close On Module 3 (3W) -- 01001 Open On Module 4 (3W) -- 01010 Close On Module 4 (3W) -- 01011 Open On Module 5 (3W) -- 01100 Close On Module 5 (3W) -- 01101 Open On Module 6 (3W) -- 01110 Close On Module 6 (3W) -- 01111 Open On Module 7 (3W) -- Data Function -- 10000 Close On Module 7 (3W) -- 10001 Open On Module 8 (3W) -- 10010 Close On Module 8 (3W) -- 10011 Reserved -- 10100 Reserved -- 10101 Reserved -- 10110 Reserved -- 10111 Reserved -- 11000 Reserved -- 11001 Reserved -- 11010 Reserved -- 11011 Reserved -- 11100 Reserved -- 11101 Reserved -- 11110 Reserved -- 11111 Reserved

  20. RECEIVE CYCLE -- S(1) = 1 -- S(2) Parity bit (odd) -- S(3) Power Down Bit -- S(4) Broadcast Bit -- S(5:12) Select Code -- S(13) RD/WR bit -- S(14:16) Section Address -- S(17:32) Data to be written TRANSMIT CYCLE -- S(33) = 0 -- S(34) echo of S(2) -- S(35) echo of S(3) -- S(36) echo of S(4) -- S(37:44) echo of S(5:12) -- S(45) echo of S(13) -- S(39:41) echo of S(14:16) -- S(42:64) Data to be read “Le Croy Bus” protocol for UGE UGBC Section Address 000 MV100, MCA, Pump Register 001 Open Time Register 010 Curr. or Event Status Reg. 011 RS232 Status Register 100 Reserved 101 Valve Control 110 HV safety Signal Control 111 P&T Sensors UGBS Section Address 000 MV100 Register 001 Open Time Register 010 Curr. or Event Status Reg. 011 Reserved 100 Reserved 101 Valve Control 110 Reserved 111 P&T Sensors UGFV Section Address 000 PS Control Register 001 Module 1&2 010 Module 3&4 011 Module 5&6 100 Module 7&8 101 Reserved 110 Reserved 111 Reserved

  21. Pump control circuit is based on three switches • Pump energizing requires two different steps • Pump connection to the power supply is done using SW-1 • Pump is energized using SW-2 (full speed) or SW-3 (half speed) • Energized and Speed status of the valve are stored in the • FPGA throughthe use of comparators monitoring the • voltage appliedto the pump and of ADC monitoring the • surged current +24 SW-1 From FPGA • Part List: • N-Mosfet SUB85N10 (ID = 85A, VDS = 100V) • P-Mosfet SUB65N06 (ID = -65A, VDS = -60V) • N-Mosfet Si4840DY (ID = 10A, VDS = 40V) • Comparator LM239 • 12 bits ADC AD7476 R From FPGA SW-2 SW-3 GND

  22. +24 • MV100 valve control circuit is based on two switches • Valve energizing requires two different steps • Valve connection to the 24 V power supply is done using SW-1 • Valve is closed using SW-2 • Energized status of the valve is stored in the FPGA through • the use of a comparator (LM239) monitoring the voltage applied • to the valve • Mechanical status of the valve is stored in the FPGA • using the valve position switch signals (after debouncing) • Open time(miminum of 50 ms up to 30 seconds) • is programmable by USCM • To implement the switch Vishay P-Mosfet and N-mosfet • are used : • SUB85N10 (ID = 85A , VDS = 100V) • SUB65P06 (ID = 65A , VDS = 60V) • Si4840DY (ID = 10A , VDS = 40V) From FPGA From “Cold” FPGA SW-1 MV100 LM239 To FPGA From FPGA SW-2 From “Cold” FPGA GND

  23. Flliper valve control circuit is based on 4 switches A B GND +12 OPEN Valve with positive pulse CLOSE Valve with negative pulse Open Time MAX = 100 ms Close Time MAX = 100 ms Current = 150 mA + FV B A • Part List: • 2 x Half Bridge Si4544 (ID = 6.5A, VDS = 30V) • 1 x 2N-Mosfet Si4966 (ID = 7A, VDS = 20V)

  24. UGBS interface to BOX-S Tasks: • open the valves • test the status of the valves • monitor pressure and temperature sensor • emergency open of safety valve without USCM intervention Redundancy: • hot & cold (hot & hot will be evaluated against power budget) • no duplication of control circuits on the same board

  25. UGBS

  26. UGFV interface to manifold valves Tasks: • open/close the valves under USCM command • open/close the valves under UGBC command • pressure sensor output signal multiplexing to the USCM ADC input lines Redundancy: • hot & cold (hot & hot will be evaluated against power budget) • no duplication of control circuits on the same board

  27. UGFV-XX

  28. UGM modules • 82 pressure sensors (honeywell 26PC-C) arranged in 16 modules • (14 with 5 p.s. and 2 with 6 p.s.) • The typical output signal from the sensor (Out+ / Out-) is in the ±100 mV range (±15psi) and isconditionedand multiplexed to be connected to the UGSCM ADC lines (0 to 4.096 VDC) From others modules Manifold module (6/5 pressure sensors) UGM module local to the sensors UGFV-xx board in the UGE crate Out+ x6 to USCM ADC-In 1:8 GND +12 AD620 26PC-C x6 x6 Out-

  29. UGM module

  30. UGFV ADC signals backplane AIN(0:5) USCM AIN(8:13) AIN(16:21) AIN(24:29) AIN(0:5) USCM’ AIN(8:13) AIN(16:21) AIN(24:29) UGFV-AC ADCBUS(1:6) UGFV-AC’ ADCBUS(1:6) UGFV-BD ADCBUS(1:6) UGFV-BD’ ADCBUS(1:6) Backplane

  31. UGpd-Box Power Supply Requirements Operating Voltage (V) Normal Power (W) Peak Power (W) DC-DC Converter 120 <0.05 < 0.05 2x CAEN S9025 24 6 80 ? LAMBDA or INTERPOINT ? 10.8 4.9 18 2x CAEN S9022 5 7.1 9 2x CAEN S9024 3.3 1 2 2x CAEN S9023 Total 19.05 109.05 • Hot and Cold redundancy used • 10 DC-DC Converters needed

More Related