360 likes | 430 Views
Happy Birthday, Darwin!. Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD. 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A. Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD. 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A
E N D
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A Q &E ~Q &E
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A Q & ~Q E Q &E ~Q &E
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A ~B Q & ~Q E Q &E ~Q &E
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A ~B E Q & ~Q E Q &E ~Q &E
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A A v ~C ~B E Q & ~Q E Q &E ~Q &E
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A A v ~C vI ~B E Q & ~Q E Q &E ~Q &E
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A 4 A 3 &E A v ~C vI ~B E Q & ~Q E Q &E ~Q &E
Show that {(A v ~C) ~B, [~B (Q &~Q)], ~C & A} ⊦ is inconsistent in SD 1 (A v ~C) ~B A 2 ~B (Q & ~Q) A 3 ~C & A A 4 A 3 &E 5 A v ~C 4 vI 6 ~B 1, 5E 7 Q & ~Q 6, 2 E 8 Q 7 &E 9 ~Q 7 &E
Show that [A (B C)] [(A & B) C] is a theorem in SD. [A (B C)] [(A & B) C]
Show that [A (B C)] [(A & B) C] is a theorem in SD. A (B C) A/I (A & B) C [A (B C)] [(A & B) C] I
Show that [A (B C)] [(A & B) C] is a theorem in SD. A (B C) A/I A & B A/I C (A & B) CI [A (B C)] [(A & B) C] I
Show that [A (B C)] [(A & B) C] is a theorem in SD. A (B C) A/I A & B A/I B C C E (A & B) CI [A (B C)] [(A & B) C] I
Show that [A (B C)] [(A & B) C] is a theorem in SD. A (B C) A/I A & B A/I B C E C E (A & B) CI [A (B C)] [(A & B) C] I
Show that [A (B C)] [(A & B) C] is a theorem in SD. A (B C) A/I A & B A/I A &E B C E C E (A & B) CI [A (B C)] [(A & B) C] I
Show that [A (B C)] [(A & B) C] is a theorem in SD. A (B C) A/I A & B A/I A 2 &E B C 1,3 E B 2 &E C E (A & B) CI [A (B C)] [(A & B) C] I
Show that [A (B C)] [(A & B) C] is a theorem in SD. 1 A (B C) A/I 2 A & B A/I 3 A 2 &E 4 B C 1,3 E 5 B 2 &E 6 C 4,5E 7 (A & B) C 2-6 I 8 [A (B C)] [(A & B) C] 1-7 I
Show that A ~B and B ~A are equivalent in SD A ~B A B ~A
Show that A ~B and B ~A are equivalent in SD 1A ~B A 2 B A/I ~A B ~A I
Show that A ~B and B ~A are equivalent in SD 1A ~B A 2 B A/I 3 A A/~I ~A ~I B ~A I
Show that A ~B and B ~A are equivalent in SD 1A ~B A 2 B A/I 3 A A/~I 4 B 2 R 5 ~B 1,3 E ~A ~I B ~A I
Show that A ~B and B ~A are equivalent in SD 1A ~B A 2 B A/I 3 A A/~I 4 B 2 R 5 ~B 1,3 E 6 ~A 3-5 ~I 7 B ~A 1-6 I
Show that A ~B and B ~A are equivalent in SDHere is the other derivation (you need both). 1B ~A A 2 A A/I 3 B A/~I 4 A 2 R 5 ~A 1,3 E 6 ~B 3-5 ~I 7 A ~B 1-6 I
Show that (~A B) (A ~B) is a theorem in SD. (~A B) (A ~B)
Show that (~A B) (A ~B) is a theorem in SD. 1 ~A B A/I A ~B (~A B) (A ~B) I
Show that (~A B) (A ~B) is a theorem in SD. 1 ~A B A/I A ~B I (~A B) (A ~B) I
Show that (~A B) (A ~B) is a theorem in SD. 1 ~A B A/I 2A A/I ~B ~B A/I A A ~B I (~A B) (A ~B) I
Show that (~A B) (A ~B) is a theorem in SD. 1 ~A B A/I 2A A/I ~B ~I ~B A/I A ~E A ~B I (~A B) (A ~B) I
Show that (~A B) (A ~B) is a theorem in SD. 1 ~A B A/I 2 A A/I 3 B A/~I 4 A 2R 5 ~A 1, 3 E 6 ~B 3-5 ~I 7 ~B A/I A 8-10~E A ~B 2-6, 7-11I (~A B) (A ~B) 1-12 I
Show that (~A B) (A ~B) is a theorem in SD. 1 ~A B A/I 2 A A/I 3 B A/~I 4 A 2R 5 ~A 1, 3 E 6 ~B 3-5 ~I 7 ~B A/I 8 ~A A/~E • ~B 7R • B 1, 8 E 11 A 8-10~E 12 A ~B 2-6, 7-11I 13 (~A B) (A ~B) 1-12 I
Show that the following argument is valid in SD:(A v C) v B-----------------------(A v B) v (B v C) 1(A v B) v B A (A v B) v (B v C)
Show that the following argument is valid in SD:(A v C) v B-----------------------(A v B) v (B v C) 1(A v B) v B A (A v B) v (B v C) vE
Show that the following argument is valid in SD:(A v C) v B-----------------------(A v B) v (B v C) 1 (A v C) v B A 2 A v C A/vE (A v B) v (B v C) 1, B A/vE (A v B) v (B v C) (A v B) v (B v C) 1, vE
Show that the following argument is valid in SD:(A v C) v B-----------------------(A v B) v (B v C) 1 (A v C) v B A 2 A v C A/vE (A v B) v (B v C) 1, B A/vE A v B vI (A v B) v (B v C) vI (A v B) v (B v C) 1, vE
Show that the following argument is valid in SD:(A v C) v B-----------------------(A v B) v (B v C) 1 (A v C) v B A 2 A v C A/vE 3 A A/vE 4 A v B 3, vI 5 (A v B) v (B v C) 4, vI 6 C A/vE 7 B v C 6 vI 8 (A v B) v (B v C) 7 vI 9 (A v B) v (B v C) 2, 3-5, 6-8 vE 10 B A/vE 11 A v B 10 vI 12 (A v B) v (B v C) 11 vI 13 (A v B) v (B v C) 1, 2-9, 10-12 vE