1 / 115

The GSI anomaly: Theoretical interpretations

This workshop discusses theoretical interpretations of the GSI anomaly, exploring different explanations and their implications. It examines the requirements for explaining the observed oscillations and the need to test these explanations against other experiments.

trinaf
Download Presentation

The GSI anomaly: Theoretical interpretations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The GSI anomaly: Theoretical interpretations Alexander Merle Max-Planck-Institute for Nuclear Physics Heidelberg Germany LAUNCH workshop, 9-12 November 2009

  2. Contents: • Introduction • General problems for explanations • The ideas up to now • Conclusions

  3. 1. Introduction

  4. 1. Introduction Litvinov et al: Phys. Lett. B664, 162 (2008)

  5. 1. Introduction Periodic modula-tion of the expect-ed exponential law in EC-decays of different highly charged ions (Pm-142 & Pr-140) Litvinov et al: Phys. Lett. B664, 162 (2008)

  6. 1. Introduction Periodic modula-tion of the expect-ed exponential law in EC-decays of different highly charged ions (Pm-142 & Pr-140) exponential law Litvinov et al: Phys. Lett. B664, 162 (2008)

  7. 1. Introduction Periodic modula-tion of the expect-ed exponential law in EC-decays of different highly charged ions (Pm-142 & Pr-140) periodic modulation exponential law Litvinov et al: Phys. Lett. B664, 162 (2008)

  8. 1. Introduction Periodic modula-tion of the expect-ed exponential law in EC-decays of different highly charged ions (Pm-142 & Pr-140) periodic modulation exponential law T~7s Litvinov et al: Phys. Lett. B664, 162 (2008)

  9. Literature on the GSI Anomaly (complete?): Lipkin, arXiv:0801.1465; Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079; Ivanov et al., arXiv:0801.2121; Giunti, arXiv:0801.4639; Ivanov et al., arXiv:0804.1311; Faber, arXiv:0801.3262; Walker, Nature 453N7197 (2008) 864–865; Ivanov et al., arXiv:0803.1289; Kleinert & Kienle, arXiv:0803.2938; Ivanov et al., Phys. Rev. Lett. 101 (2008) 182501; Burkhardt et al., arXiv:0804.1099; Peshkin, arXiv:0804.4891; Giunti, Phys. Lett. B665 (2008) 92–94, arXiv:0805.0431; Lipkin, arXiv:0805.0435; Vetter et al., Phys. Lett. B670 (2008) 196–199, arXiv:0807.0649; Litvinov et al., arXiv:0807.2308; Ivanov et al., arXiv:0807.2750; Faestermann et al., arXiv:0807.3297; Giunti, arXiv:0807.3818; Kienert et al., J. Phys. Conf. Ser. 136 (2008) 022049, arXiv:0808.2389; Gal, arXiv:0809.1213; Pavlichenkov, Europhys. Lett. 85 (2009) 40008, arXiv:0810.2898; Cohen et al., arXiv:0810.4602; Peshkin, arXiv:0811.1765; Lambiase et al., arXiv:0811.2302; Giunti, Nucl. Phys. Proc. Suppl. 188 (2009) 43–45, arXiv:0812.1887; Lipkin, arXiv:0905.1216; Ivanov et al., arXiv:0905.1904; Giunti, arXiv:0905.4620; Faber et al., arXiv:0906.3617; Isakov, arXiv:0906.4219; Faestermann, arXiv:0907.1557; Winckler et al., arXiv:0907.2277; Merle, arXiv:0907.3554; Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877; Flambaum, arXiv:0908.2039; Kienle & Ivanov, arXiv:0909.1285; Kienle & Ivanov, arXiv:0909.1287; Lipkin, arXiv:0910.5049

  10. 2. General problems for explanations

  11. 2. General problems for explanations HERE: Let us assume that the observation at GSI is a real effect.

  12. 2. General problems for explanations HERE: Let us assume that the observation at GSI is a real effect. THIS MEANS: Any explanation has to meet several require-ments.

  13. What do we have to explain?

  14. What do we have to explain? • trivial (?) requirement: there must be a mechanism that generates the oscillations • there must be an explanation why this effect has not been seen in other experiments • scaling: it seems that ω~1/M (or ω~Q), while Q/M≈const. (Ivanov et al., arXiv:0905.1904) • How can the explanation be tested? Does it lead to further consequences?

  15. What do we have to explain? • trivial (?) requirement: there must be a mechanism that generates the oscillations • there must be an explanation why this effect has not been seen in other experiments • scaling: it seems that ω~1/M (or ω~Q), while Q/M≈const. (Ivanov et al., arXiv:0905.1904) • How can the explanation be tested? Does it lead to further consequences?

  16. What do we have to explain? • trivial (?) requirement: there must be a mechanism that generates the oscillations • there must be an explanation why this effect has not been seen in other experiments • scaling: it seems that ω~1/M (or ω~Q), while Q/M≈const. (Ivanov et al., arXiv:0905.1904) • How can the explanation be tested? Does it lead to further consequences?

  17. What do we have to explain? • trivial (?) requirement: there must be a mechanism that generates the oscillations • there must be an explanation why this effect has not been seen in other experiments • scaling: it seems that ω~1/M (or ω~Q), while Q/M≈const. (Ivanov et al., arXiv:0905.1904) • How can the explanation be tested? Does it lead to further consequences?

  18. We know 2 types of explanations:

  19. We know 2 types of explanations: 1. Explanations that do not work for principal reasons.

  20. We know 2 types of explanations: 1. Explanations that do not work for principal reasons. 2. Explanations that do work in principle but yield a wrong order of magnitude or some other wrong behavior.

  21. We know 2 types of explanations: 1. Explanations that do not work for principal reasons. 2. Explanations that do work in principle but yield a wrong order of magnitude or some other wrong behavior. It would be nice to also have:

  22. We know 2 types of explanations: 1. Explanations that do not work for principal reasons. 2. Explanations that do work in principle but yield a wrong order of magnitude or some other wrong behavior. It would be nice to also have: 3. Explanations that do work and are correct.

  23. We know 2 types of explanations: 1. Explanations that do not work for principal reasons. 2. Explanations that do work in principle but yield a wrong order of magnitude or some other wrong behavior. It would be nice to also have: 3. Explanations that do work and are correct. → not so easy to find…

  24. 3. The ideas up to now

  25. 3. The ideas up to now CAUTION!!!I only discuss severalideas that have appeared.This DOES NOT mean that I agree with all of them!!!

  26. 3. The ideas up to now CAUTION!!!I only discuss severalideas I came across.This DOES NOT mean that I agree with all of them!!!

  27. 3. The ideas up to now CAUTION!!!I only discuss severalideas I came across.This DOES NOT mean that I agree with all of them!!!

  28. 3. The ideas up to now CAUTION!!!I only discuss severalideas I came across.This DOES NOT mean that I agree with all of them!!! Please keep that in mind!

  29. 3. The ideas up to now Neutrino oscillations:

  30. 3. The ideas up to now Neutrino oscillations: Lipkin, arXiv:0801.1465 Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079 Ivanov et al., arXiv:0801.2121 Ivanov et al., arXiv:0804.1311 Faber, arXiv:0801.3262 Walker, Nature 453N7197 (2008) 864–865 Ivanov et al., arXiv:0803.1289 Lipkin, arXiv:0805.0435 Ivanov et al., arXiv:0807.2750 Lipkin, arXiv:0905.1216 Ivanov et al., arXiv:0905.1904 Faber et al., arXiv:0906.3617 Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877 Kienle & Ivanov, arXiv:0909.1285 Kienle & Ivanov, arXiv:0909.1287

  31. 3. The ideas up to now Neutrino oscillations: Problem: Lipkin, arXiv:0801.1465 Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079 Ivanov et al., arXiv:0801.2121 Ivanov et al., arXiv:0804.1311 Faber, arXiv:0801.3262 Walker, Nature 453N7197 (2008) 864–865 Ivanov et al., arXiv:0803.1289 Lipkin, arXiv:0805.0435 Ivanov et al., arXiv:0807.2750 Lipkin, arXiv:0905.1216 Ivanov et al., arXiv:0905.1904 Faber et al., arXiv:0906.3617 Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877 Kienle & Ivanov, arXiv:0909.1285 Kienle & Ivanov, arXiv:0909.1287

  32. 3. The ideas up to now Neutrino oscillations: Problem: Lipkin, arXiv:0801.1465 Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079 Ivanov et al., arXiv:0801.2121 Ivanov et al., arXiv:0804.1311 Faber, arXiv:0801.3262 Walker, Nature 453N7197 (2008) 864–865 Ivanov et al., arXiv:0803.1289 Lipkin, arXiv:0805.0435 Ivanov et al., arXiv:0807.2750 Lipkin, arXiv:0905.1216 Ivanov et al., arXiv:0905.1904 Faber et al., arXiv:0906.3617 Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877 Kienle & Ivanov, arXiv:0909.1285 Kienle & Ivanov, arXiv:0909.1287

  33. 3. The ideas up to now Neutrino oscillations: Problem: Lipkin, arXiv:0801.1465 Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079 Ivanov et al., arXiv:0801.2121 Ivanov et al., arXiv:0804.1311 Faber, arXiv:0801.3262 Walker, Nature 453N7197 (2008) 864–865 Ivanov et al., arXiv:0803.1289 Lipkin, arXiv:0805.0435 Ivanov et al., arXiv:0807.2750 Lipkin, arXiv:0905.1216 Ivanov et al., arXiv:0905.1904 Faber et al., arXiv:0906.3617 Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877 Kienle & Ivanov, arXiv:0909.1285 Kienle & Ivanov, arXiv:0909.1287 • neutrino not detected • ‹νi|νk›=δik • incoherent summation

  34. 3. The ideas up to now Neutrino oscillations: Problem: Lipkin, arXiv:0801.1465 Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079 Ivanov et al., arXiv:0801.2121 Ivanov et al., arXiv:0804.1311 Faber, arXiv:0801.3262 Walker, Nature 453N7197 (2008) 864–865 Ivanov et al., arXiv:0803.1289 Lipkin, arXiv:0805.0435 Ivanov et al., arXiv:0807.2750 Lipkin, arXiv:0905.1216 Ivanov et al., arXiv:0905.1904 Faber et al., arXiv:0906.3617 Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877 Kienle & Ivanov, arXiv:0909.1285 Kienle & Ivanov, arXiv:0909.1287 • neutrino not detected • ‹νi|νk›=δik • incoherent summation

  35. 3. The ideas up to now Neutrino oscillations: Problem: Lipkin, arXiv:0801.1465 Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079 Ivanov et al., arXiv:0801.2121 Ivanov et al., arXiv:0804.1311 Faber, arXiv:0801.3262 Walker, Nature 453N7197 (2008) 864–865 Ivanov et al., arXiv:0803.1289 Lipkin, arXiv:0805.0435 Ivanov et al., arXiv:0807.2750 Lipkin, arXiv:0905.1216 Ivanov et al., arXiv:0905.1904 Faber et al., arXiv:0906.3617 Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877 Kienle & Ivanov, arXiv:0909.1285 Kienle & Ivanov, arXiv:0909.1287 • neutrino not detected • ‹νi|νk›=δik • incoherent summation

  36. 3. The ideas up to now Neutrino oscillations: Problem: Lipkin, arXiv:0801.1465 Litvinov et al., Phys. Lett. B664 (2008) 162–168, arXiv:0801.2079 Ivanov et al., arXiv:0801.2121 Ivanov et al., arXiv:0804.1311 Faber, arXiv:0801.3262 Walker, Nature 453N7197 (2008) 864–865 Ivanov et al., arXiv:0803.1289 Lipkin, arXiv:0805.0435 Ivanov et al., arXiv:0807.2750 Lipkin, arXiv:0905.1216 Ivanov et al., arXiv:0905.1904 Faber et al., arXiv:0906.3617 Ivanov & Kienle, Phys. Rev. Lett. 103 (2009) 062502, arXiv:0908.0877 Kienle & Ivanov, arXiv:0909.1285 Kienle & Ivanov, arXiv:0909.1287 • neutrino not detected • ‹νi|νk›=δik • incoherent summation

  37. Interference of the final states:

  38. Interference of the final states: Isakov, arXiv:0906.4219

  39. Interference of the final states: Isakov, arXiv:0906.4219 General idea:

  40. Interference of the final states: Isakov, arXiv:0906.4219 General idea: The competing process to EC is β+ decay. → Assumption of the author: The final states |EC› and |β+› might interfere like |νe› and |νμ›.

  41. Interference of the final states: Isakov, arXiv:0906.4219 General idea: The competing process to EC is β+ decay. → Assumption of the author: The final states |EC› and |β+› might interfere like |νe› and |νμ›.

  42. Interference of the final states: Isakov, arXiv:0906.4219 General idea: The competing process to EC is β+ decay. → Assumption of the author: The final states |EC› and |β+› might interfere like |νe› and |νμ›. Problem: The EC and the β+ mode are distinct. → How should they interfere at all???

  43. Interference of the final states: Isakov, arXiv:0906.4219 General idea: The competing process to EC is β+ decay. → Assumption of the author: The final states |EC› and |β+› might interfere like |νe› and |νμ›. Problem: The EC and the β+ mode are distinct. → How should they interfere at all??? The author seems to be aware of this problem:

  44. Interference of the final states: Isakov, arXiv:0906.4219 General idea: The competing process to EC is β+ decay. → Assumption of the author: The final states |EC› and |β+› might interfere like |νe› and |νμ›. Problem: The EC and the β+ mode are distinct. → How should they interfere at all??? The author seems to be aware of this problem:

  45. The pulsating vacuum:

  46. The pulsating vacuum: Kleinert & Kienle, arXiv:0803.2938

  47. The pulsating vacuum: Kleinert & Kienle, arXiv:0803.2938 Idea:

  48. The pulsating vacuum: Kleinert & Kienle, arXiv:0803.2938 Idea: emission of a νe with E>0 ≡ absorption of an anti-νe with E<0 (from the vacuum) that oscillates

  49. The pulsating vacuum: Kleinert & Kienle, arXiv:0803.2938 Idea: emission of a νe with E>0 ≡ absorption of an anti-νe with E<0 (from the vacuum) that oscillates Problems:

  50. The pulsating vacuum: Kleinert & Kienle, arXiv:0803.2938 Idea: emission of a νe with E>0 ≡ absorption of an anti-νe with E<0 (from the vacuum) that oscillates Problems: • first, this is just a different way of drawing the decay diagram → What should that change? • even if a vacuum-neutrino oscillates, the vacuum contains all sorts of neutrinos → effect killed due to unitarity • Why should the oscillation in the vacuum have any correlation to the injection time of the ions?

More Related