300 likes | 444 Views
Neutron Stars 3: Thermal evolution. Andreas Reisenegger Depto. de Astronomía y Astrofísica Pontificia Universidad Católica de Chile. Outline. Cooling processes of NSs: Neutrinos: direct vs. modified Urca processes, effects of superfluidity & exotic particles
E N D
Neutron Stars 3: Thermal evolution Andreas Reisenegger Depto. de Astronomía y Astrofísica Pontificia Universidad Católica de Chile
Outline • Cooling processes of NSs: • Neutrinos: direct vs. modified Urca processes, effects of superfluidity & exotic particles • Photons: interior vs. surface temperature • Cooling history: theory & observational constraints • Accretion-heated NSs in quiescence • Late reheating processes: • Rotochemical heating • Gravitochemical heating & constraint on dG/dt • Superfluid vortex friction • Crust cracking
Bibliography • Yakovlev et al. (2001), Neutrino Emission from Neutron Stars, Physics Reports, 354, 1 (astro-ph/0012122) • Shapiro & Teukolsky (1983), Black Holes, White Dwarfs, & Neutron Stars, chapter 11: Cooling of neutron stars(written before any detections of cooling neutron stars) • Yakovlev & Pethick (2004), Neutron Star Cooling, Ann. Rev. A&A, 42, 169
General ideas • Neutron stars are born hot (violent core collapse) • They cool through the emission of neutrinos from their interior & photons from their surface • Storage, transport, and emission of heat depend on uncertain properties of dense matter (strong interactions, exotic particles, superfluidity) • Measurement of NS surface temperatures (and ages or accretion rates) can allow to constrain these properties • Very old NSs may not be completely cold, due to various proposed heating mechanisms • These can also be used to constrain dense-matter & gravitational physics.
“Urca processes” NS cooling through emission of neutrinos & antineutrinos • Direct Urca: • Rates depend on available initial & final states • Much slower than free n decay because of Pauli • Still very fast on astrophysical scales • Require high fraction of protons & electrons for momentum conservation: possibly forbidden • Modified Urca: • Rates reduced because additional particle must be present at the right time, but always allowed Why Urca: These processes make stars lose energy as quickly as George Gamow lost his money in the “Casino da Urca” in Brazil...
Surface temperature Model for heat conduction through NS envelope (Gudmundsson et al. 1983) Potekhin et al. 1997
Cooling (& heating) • Heat capacity of non-interacting, degenerate fermions C T (elementary statistical mechanics) • Can also be reduced through Cooper pairing: will be dominated by non-superfluid particle species • Cooling & heating don’t affect the structure of the star (to a very good approximation)
Observations Thermal X-rays are: • faint • absorbed by interstellar HI • often overwhelmed by non-thermal emission difficult to detect & measure precisely D. J. Thompson, astro-ph/0312272
Cooling with modified Urca & no superfluidityvs. observations
Direct vs. modified Urca Yakovlev & Pethick 2004
Effect of exotic particles Yakovlev & Pethick 2004
Yakovlev & Pethick 2004 Superfluid games - 1
Superfluid games - 2 Yakovlev & Pethick 2004
Heating neutron star matter by weak interactions • Chemical (“beta”) equilibrium sets relative number densities of particles (n, p, e, ...) at different pressures • Compressing a fluid element perturbs equilibrium • Non-equilibrium reactions tend to restore equilibrium • “Chemical” energy released as neutrinos & “heat” Reisenegger 1995, ApJ, 442, 749
Possible forcing mechanisms • Neutron star oscillations (bulk viscosity): SGR flare oscillations, r-modes – Not promising • Accretion: effect overwhelmed by external & crustal heat release – No. • d/dt: “Rotochemical heating” – Yes • dG/dt: “Gravitochemical heating” - !!!???
“Rotochemical heating” NS spin-down (decreasing centrifugal support) • progressive density increase • chemical imbalance • non-equilibrium reactions • internal heating • possibly detectable thermal emission Idea & order-of-magnitude calculations: Reisenegger 1995 Detailed model: Fernández & Reisenegger 2005, ApJ, 625, 291
Recall standard neutron star cooling: No thermal emission after 10 Myr. Yakovlev & Pethick 2004
Thermo-chemical evolution • Variables: • Chemical imbalances • Internal temperature T • Both are uniform in diffusive equilibrium.
MSP evolution Stationary state Internal temperature Chemical imbalances Fernández & R. 2005 Magnetic dipole spin-down (n=3) with P0 = 1 ms; B = 108G; modified Urca
Insensitivity to initial temperature Fernández & R. 2005 For a given NS model, MSP temperatures can be predicted uniquely from the measured spin-down rate.
SED for PSR J0437-4715 HST-STIS far-UV observation (1150-1700 Å) Kargaltsev, Pavlov, & Romani 2004
PSR J0437-4715:Predictions vs. observation Observational constraints Modified Urca Theoretical models Direct Urca Fernández & R. 2005
Old, classical pulsars: sensitivity to initial rotation rate D. González, in preparation
dG/dt ? • Dirac (1937): constants of nature may depend on cosmological time. • Extensions to GR (Brans & Dicke 1961) supported by string theory • Present cosmology: excellent fits, dark mysteries, speculations: “Brane worlds”, curled-up extra dimensions, effective gravitational constant • Observational claims for variations of • (Webb et al. 2001; disputed) • (Reinhold et al. 2006) See how NSs constrain d/dt of
Gravitochemical heating dG/dt (increasing/decreasing gravity) • density increase/decrease • chemical imbalance • non-equilibrium reactions • internal heating • possibly detectable thermal emission Jofré, Reisenegger, & Fernández 2006, Phys. Rev. Lett., 97, 131102
Most general constraint from PSR J0437-4715 “Modified Urca” reactions (slow ) PSR J0437-4715 Kargaltsev et al. 2004 obs. “Direct Urca” reactions (fast)
Constraint from PSR J0437-4715 assuming only modified Urca is allowed Modified Urca PSR J0437-4715 Kargaltsev et al. 2004 obs. Direct Urca
Main uncertainties • Atmospheric model: • Deviations from blackbody • H atmosphere underpredicts Rayleigh-Jeans tail • B. Droguett • Neutrino emission mechanism/rate: • Slow (mod. Urca) vs. fast (direct Urca, others) • Cooper pairing (superfluidity): • Reisenegger 1997; Villain & Haensel 2005 • C. Petrovich, N. González • Phase transitions: • I. Araya Not important (because stationary state): • Heat capacity • Heat transport through crust
Other heating mechanisms Accretion of interstellar gas • Only for slowly moving, slowly rotating and/or unmagnetized stars • Does not seem to be enough to make old NSs observable (conclusion of Astro. Estelar Avanzada 2008-2) Vortex friction(Shibazaki & Lamb 1989, ApJ, 346, 808) • Very uncertain parameters • More important for slower pulsars with higher B: Crust cracking (Cheng et al. 1992, ApJ, 396, 135 - corrected by Schaab et al. 1999, A&A, 346, 465) • Similar dependence as rotochemical; much weaker