1 / 32

8/6/2002

Lunar Sample Return via the Interplanetary Supherhighway. EL 2. Lander. Lander Return. Moon. Earth. Moon. LL 2. Lander Return. LL 2 Stable Manifold Insertion. Lander Separation. Orbiter. EL 1. Lunar Orbit. AIAA/AAS Astrodynamics Specilaist Conference Martin.Lo@jpl.nasa.gov

truly
Download Presentation

8/6/2002

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lunar Sample Return via the Interplanetary Supherhighway EL2 Lander Lander Return Moon Earth Moon LL2 Lander Return LL2 Stable Manifold Insertion Lander Separation Orbiter EL1 Lunar Orbit AIAA/AAS Astrodynamics Specilaist Conference Martin.Lo@jpl.nasa.gov Min-Kun.Chung@jpl.nasa.gov JPL Caltech 8/6/2002

  2. Agenda • Lunar Sample Return Mission Overview • Baseline Mission Scenario • Lunar L2 Case (LL2) • Mission Performance Comparison

  3. Mission Overview • Goal: Collect and Return Lunar Samples to Earth • Aitken Basin on Backside of Moon, (180°, -57°) • Launch Combo, the Combined Flight System • Communications Orbiter • Desire Continuous Communications Coverage Between Earth and Lander Module • Lander/Return Module • Sample Collection in Sun, ~2 Weeks Available • Return to Earth (non-specific target)

  4. Key Results • Metric: Total DV of • Combo • Lander/Return Module • Communications Orbiter • Trade Time for Total DV • Best Case 1446 m/s Less than Conic Case • Baseline 1020 m/s Less than Conic Case

  5. Key Concepts Used in the Paper • Lunar L2 Halo Link Earth to Lunar Backside • Colombo (L1) • Farquhar: Halo Orbits • Dynamical Systems Theory • Poincaré, Connelly, McGehee • Gomez, Jorba, Llibre, Martinez, Masdemont, Simó • Hiten-Like Transfers • Belbruno, Miller • Lo, Ross • Koon, Lo, Marsden, Ross • Heteroclinic Connection Theory • Barden, Howell • Koon, Lo, Marsden, Ross

  6. JPL LTool Team • Martin Lo Section 312 • Task Manager • Larry Romans Section 335 • Cognizant S/W Engineer (Marthematica Developer) • George Hockney Section 367 • S/W Architecture & Sys Engineer • Brian Barden Section 312 • Trajectory Design & Algorithms • Min-Kun Chung Section 312 • Astrodynamics Tools • James Evans Section 368 • Infrastructure S/W, Visualization Tools

  7. EL1 Moon • LL1 • LL2 Earth • EL2 Case LL2 : 1020 m/s Cheaper Than Conic BASELINE CASE

  8. EL1 Moon • LL1 • LL2 Earth • EL2 Case LL1 : 943 m/s Cheaper Than Conic

  9. EL1 Earth Moon • LL1 • LL2 • EL2 Case EL1 : 1446 m/s Cheaper Than Conic

  10. EL2 Moon Earth Lander Return EL1 LL2 Case: Direct Transfer to LL2 Lissajous Orbit • Lunar Transfer • LL2 Lissajous Orbit • Lunar Landing • Lander Return

  11. Lander Return Trans-Lunar Injection 3122 m/s at 6/14/09 Moon Earth 11/7/90 LL1 LL2 Earth 6/14/90 LL2 Insertion 570 m/s at 6/18/09 Lander Return LL2 Case: Trans-Lunar Phase

  12. Lander Return Lander Orbit Trans-Lunar Orbit Lander Return: 2424 m/s at 7/28/09 Moon LL2 LL1 Lander Touchdown: 2335 m/s at 7/17/09 LL2 Stable Manifold Insertion Orbiter Lander LL2 Departure: 35 m/s at 7/7/09 LL2 Case: Lunar Phase

  13. EL2 Moon Earth Lander Return EL1 LL2 Case: Earth Moon Rotating Frame

  14. Orbiter LL1 Earth Lander Return LL2 LL2 Case: EME2000 Inertial Frame

  15. Lander Return Earth LL1 EL2 LL2 Orbiter LL2 Case: Sun-Earth Rotating Frame

  16. LL2 Case:Mission Sequence & DV’s

  17. Lander Departs for Moon: 95 m/s Moon LL1 LL2 Moon LL1 Heteroclinic Connection Landing: 2330 m/s 8.5 days later LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1

  18. LL1 Case: Mission Sequence & DV’s LL2 Case

  19. EL1 LOI 60 m/s LL1 LOI 13.2 m/s Earth Launch 3193 m/s EL1 Case: LL2 via Earth L1 • Reduce LL2 LOI DV: Launch to EL1 Fall to LL2 • Once There, Follows LL2 Case FAIR/DART Trajctory EL1 EL2

  20. EL1 Case: Mission Sequence & DV’s Reduction by Order of Magnotide LL2 Case

  21. Conic Case (S. Williams, JPL) • Conic Trans-Lunar Orbit • Lander in 100-km Lunar Parking Orbit • Orbiter in Highly Elliptical Orbit • 100x8700 km, 12 hr Period

  22. Conic Case (S. Williams, JPL)

  23. Libration Point Mission Lowers DV • Saves Up to 1446 m/s! • Provides Continuous Communication • Trade DV for Time

  24. END • END

  25. LL1 Lissajous Orbit Earth Moon LL1 Stable Manifold LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1

  26. LL1 LL2 Moon Heteroclinic Connection LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1

  27. Lander Departs for Moon: 95 m/s Moon LL1 Landing: 2330 m/s 8.5 days later LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1

  28. LUNAR L1 GATEWAY EARTH L2 HALO ORBIT MOON LUNAR L1 HALO ORBIT LUNAR L2 HALO ORBIT EARTH Interplanetary Superhighway in the Earth’s Neighborhood • Collection of Invariant Manifolds of Quasiperiodic Orbits in the Solar System • Coupled Three Body Systems

  29. Mission Design with LTool • Lissajous Orbits and Manifold • Trans-Lunar Trajectory • Lander Sample Collection in Sun • Lander Insertion Trajectory • Heteroclinic Connection from LL1 to LL2 • Interplanetary Connection from EL1 to LL2 • Lander Return Trajectory

  30. References • Barden, Howell, Formation Flying in the Vicinity of Libration Point Orbits, AAS 98-169, Monterey, CA, 2/98 • Barden, Howell, Dynamical Issues Associated with Relative Configurations of Multiple Spacecraft Near the Sun-Earth/Moon L1 Point, AAS 99-450, Girdwood, Alaska, 8/99 • Gomez, Masdemon, Simo, Lissajous Orbits Around Halo Orbits, AAS 97-106, Huntsville, Alabama, 2/97 • Howell, Barden, Lo, Applications of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission, JAS 45(2), April 1997, 161-178 • Howell, Marchand, Lo, The Temporary Capture of Short-Period Jupiter Family Comets from the Perspective of Dynamical Systems, AAS 00-155, Clearwater, FL, 1/2000 • Koon, Lo, Marsden, Ross, Heteroclinic Connections between Lyapunov Orbits and Resonance Transitions in Celestial Mechanics, to appear in Chaos

  31. References • Koon, Lo, Marsden, Ross, The Genesis Trajectory and Heteroclinic Connections, AAS99-451, Girdwood, Alaska, August, 1999 • Koon, Lo, Marsden, Ross, Shoot the Moon, AAS00-166, Clearwater, Florida, January, 2000 • Lo, The InterPlanetary Superhighway and the Origins Program, IEEE Aerospace2002 Conference, Big Sky, MT, February, 2002 • Lo et al., Genesis Mission Design, AIAA 98-4468, Boston, MA, August, 1998 • Serban, Koon, Lo, Marsden, Petzold, Ross, Wilson, Halo Orbit Correction Maneuvers Using Optimal Control, submitted to Automatica, April, 2000 • Scheeres, Vinh, Dynamis and Control of Relative Motion in an Unstable Orbit, AIAA Paper 2000-4135, August, 2000

More Related