320 likes | 495 Views
Lunar Sample Return via the Interplanetary Supherhighway. EL 2. Lander. Lander Return. Moon. Earth. Moon. LL 2. Lander Return. LL 2 Stable Manifold Insertion. Lander Separation. Orbiter. EL 1. Lunar Orbit. AIAA/AAS Astrodynamics Specilaist Conference Martin.Lo@jpl.nasa.gov
E N D
Lunar Sample Return via the Interplanetary Supherhighway EL2 Lander Lander Return Moon Earth Moon LL2 Lander Return LL2 Stable Manifold Insertion Lander Separation Orbiter EL1 Lunar Orbit AIAA/AAS Astrodynamics Specilaist Conference Martin.Lo@jpl.nasa.gov Min-Kun.Chung@jpl.nasa.gov JPL Caltech 8/6/2002
Agenda • Lunar Sample Return Mission Overview • Baseline Mission Scenario • Lunar L2 Case (LL2) • Mission Performance Comparison
Mission Overview • Goal: Collect and Return Lunar Samples to Earth • Aitken Basin on Backside of Moon, (180°, -57°) • Launch Combo, the Combined Flight System • Communications Orbiter • Desire Continuous Communications Coverage Between Earth and Lander Module • Lander/Return Module • Sample Collection in Sun, ~2 Weeks Available • Return to Earth (non-specific target)
Key Results • Metric: Total DV of • Combo • Lander/Return Module • Communications Orbiter • Trade Time for Total DV • Best Case 1446 m/s Less than Conic Case • Baseline 1020 m/s Less than Conic Case
Key Concepts Used in the Paper • Lunar L2 Halo Link Earth to Lunar Backside • Colombo (L1) • Farquhar: Halo Orbits • Dynamical Systems Theory • Poincaré, Connelly, McGehee • Gomez, Jorba, Llibre, Martinez, Masdemont, Simó • Hiten-Like Transfers • Belbruno, Miller • Lo, Ross • Koon, Lo, Marsden, Ross • Heteroclinic Connection Theory • Barden, Howell • Koon, Lo, Marsden, Ross
JPL LTool Team • Martin Lo Section 312 • Task Manager • Larry Romans Section 335 • Cognizant S/W Engineer (Marthematica Developer) • George Hockney Section 367 • S/W Architecture & Sys Engineer • Brian Barden Section 312 • Trajectory Design & Algorithms • Min-Kun Chung Section 312 • Astrodynamics Tools • James Evans Section 368 • Infrastructure S/W, Visualization Tools
• EL1 Moon • LL1 • LL2 Earth • EL2 Case LL2 : 1020 m/s Cheaper Than Conic BASELINE CASE
• EL1 Moon • LL1 • LL2 Earth • EL2 Case LL1 : 943 m/s Cheaper Than Conic
• EL1 Earth Moon • LL1 • LL2 • EL2 Case EL1 : 1446 m/s Cheaper Than Conic
EL2 Moon Earth Lander Return EL1 LL2 Case: Direct Transfer to LL2 Lissajous Orbit • Lunar Transfer • LL2 Lissajous Orbit • Lunar Landing • Lander Return
Lander Return Trans-Lunar Injection 3122 m/s at 6/14/09 Moon Earth 11/7/90 LL1 LL2 Earth 6/14/90 LL2 Insertion 570 m/s at 6/18/09 Lander Return LL2 Case: Trans-Lunar Phase
Lander Return Lander Orbit Trans-Lunar Orbit Lander Return: 2424 m/s at 7/28/09 Moon LL2 LL1 Lander Touchdown: 2335 m/s at 7/17/09 LL2 Stable Manifold Insertion Orbiter Lander LL2 Departure: 35 m/s at 7/7/09 LL2 Case: Lunar Phase
EL2 Moon Earth Lander Return EL1 LL2 Case: Earth Moon Rotating Frame
Orbiter LL1 Earth Lander Return LL2 LL2 Case: EME2000 Inertial Frame
Lander Return Earth LL1 EL2 LL2 Orbiter LL2 Case: Sun-Earth Rotating Frame
Lander Departs for Moon: 95 m/s Moon LL1 LL2 Moon LL1 Heteroclinic Connection Landing: 2330 m/s 8.5 days later LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1
LL1 Case: Mission Sequence & DV’s LL2 Case
EL1 LOI 60 m/s LL1 LOI 13.2 m/s Earth Launch 3193 m/s EL1 Case: LL2 via Earth L1 • Reduce LL2 LOI DV: Launch to EL1 Fall to LL2 • Once There, Follows LL2 Case FAIR/DART Trajctory EL1 EL2
EL1 Case: Mission Sequence & DV’s Reduction by Order of Magnotide LL2 Case
Conic Case (S. Williams, JPL) • Conic Trans-Lunar Orbit • Lander in 100-km Lunar Parking Orbit • Orbiter in Highly Elliptical Orbit • 100x8700 km, 12 hr Period
Libration Point Mission Lowers DV • Saves Up to 1446 m/s! • Provides Continuous Communication • Trade DV for Time
END • END
LL1 Lissajous Orbit Earth Moon LL1 Stable Manifold LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1
LL1 LL2 Moon Heteroclinic Connection LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1
Lander Departs for Moon: 95 m/s Moon LL1 Landing: 2330 m/s 8.5 days later LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1
LUNAR L1 GATEWAY EARTH L2 HALO ORBIT MOON LUNAR L1 HALO ORBIT LUNAR L2 HALO ORBIT EARTH Interplanetary Superhighway in the Earth’s Neighborhood • Collection of Invariant Manifolds of Quasiperiodic Orbits in the Solar System • Coupled Three Body Systems
Mission Design with LTool • Lissajous Orbits and Manifold • Trans-Lunar Trajectory • Lander Sample Collection in Sun • Lander Insertion Trajectory • Heteroclinic Connection from LL1 to LL2 • Interplanetary Connection from EL1 to LL2 • Lander Return Trajectory
References • Barden, Howell, Formation Flying in the Vicinity of Libration Point Orbits, AAS 98-169, Monterey, CA, 2/98 • Barden, Howell, Dynamical Issues Associated with Relative Configurations of Multiple Spacecraft Near the Sun-Earth/Moon L1 Point, AAS 99-450, Girdwood, Alaska, 8/99 • Gomez, Masdemon, Simo, Lissajous Orbits Around Halo Orbits, AAS 97-106, Huntsville, Alabama, 2/97 • Howell, Barden, Lo, Applications of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission, JAS 45(2), April 1997, 161-178 • Howell, Marchand, Lo, The Temporary Capture of Short-Period Jupiter Family Comets from the Perspective of Dynamical Systems, AAS 00-155, Clearwater, FL, 1/2000 • Koon, Lo, Marsden, Ross, Heteroclinic Connections between Lyapunov Orbits and Resonance Transitions in Celestial Mechanics, to appear in Chaos
References • Koon, Lo, Marsden, Ross, The Genesis Trajectory and Heteroclinic Connections, AAS99-451, Girdwood, Alaska, August, 1999 • Koon, Lo, Marsden, Ross, Shoot the Moon, AAS00-166, Clearwater, Florida, January, 2000 • Lo, The InterPlanetary Superhighway and the Origins Program, IEEE Aerospace2002 Conference, Big Sky, MT, February, 2002 • Lo et al., Genesis Mission Design, AIAA 98-4468, Boston, MA, August, 1998 • Serban, Koon, Lo, Marsden, Petzold, Ross, Wilson, Halo Orbit Correction Maneuvers Using Optimal Control, submitted to Automatica, April, 2000 • Scheeres, Vinh, Dynamis and Control of Relative Motion in an Unstable Orbit, AIAA Paper 2000-4135, August, 2000