1 / 45

The BER Program was instrumental in creating the Genomic Revolution Some BER contributions

DOE Resources & Facilities for Biological Discovery : Realizing the Potential Presentation to the BERAC 25 April 2002. “The advent of the genomic revolution has changed science profoundly. We can never look at a problem of biological understanding in just the same way again.”.

truly
Download Presentation

The BER Program was instrumental in creating the Genomic Revolution Some BER contributions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DOE Resources & Facilities for Biological Discovery : Realizing the PotentialPresentation to the BERAC25 April 2002

  2. “The advent of the genomic revolution has changed science profoundly. We can never look at a problem of biological understanding in just the same way again.”

  3. The BER Program was instrumental in creating the Genomic RevolutionSome BER contributions • GenBank created (1983) • Human Genome Project started (1987) • Critical genomic technology development: • Capillary electrophoresis technology used to sequence the genome • Large insert cloning technology (BAC’s) • First cDNA library sequencing effort • Microbial genome project started (1993) • JGI made major production contributions to genome sequencing (1999-2002)

  4. The Science has changedA new era is beginning • The first phase is ending - genomic information is readily available • The next, transforming phase is beginning – the understanding of full, complex biological systems • The potential for the nation’s science base and for critical DOE missions is immense • GTL is the nucleus for the next phase within DOE, but more is needed

  5. The Science has changed • High data densities are needed to interrogate complex systems • High-throughput technologies are essential to current biological research • New research instrumentation and methods are rapidly emerging, e.g. • Protein and nucleic acid arrays • Proteomic methods • High resolution and high information imaging

  6. The Science has changedNew technical facilities & resources needed • The scientific goals of the GTL program are key to the next phase, but more is needed to realize the opportunities • New science dictates the need for new technical resources and facilities (GTL goals) • Molecular machines of life • Gene regulatory networks • Microbial interactions • Computational capabilities for biological systems • Science examples can illustrate some of these changes and opportunities

  7. EXAMPLE 1Precise structures are encoded in genomes of microbial cells • Calcium carbonate and silicate structures are formed by functions encoded and controlled by genomic information • Genomic variations induce structural variations • These are examples of where genomic / proteomic analyses can elucidate new mechanisms • Mechanisms can enable engineering – precise, automatic control at the sub-micron level.

  8. Genomic Variation  Structural Variation How does the genetic program control the nanostructures? How can we engineer it?

  9. Silicatein: • Structure-directing catalyst • Polymerizes Silica, Methyl- and Phenyl-silsesquioxanes !

  10. TiO growth on Silicatein Courtesy of Dan Morse, UCSB

  11. EXAMPLE 2A System at the experimental-theoretical interface(E. H. Davidson et. al., Science 2002, 295, 1669) • Early development of the sea urchin embryo • Genetic networks for cell determination, interaction and function • Regulatory network consists of transcription factor genes (40 genes) and their regulatory sequences • Program moves forward only – no homeostasis • An example of building a complex predictive model by experimentation

  12. A regulatory gene network model for endomesoderm specification Skeletogenic

  13. Needed Capabilites • Compilation of a comprehensive list with prioritization is needed • Matching of facilties and resources to goals of GTL and other needs is essential • Suggested list in our document • Existing resources to be incorporated • Non-inclusive list of proposed capabilties

  14. Resources to be incorporated • Sequencing: draft and finishing – JGI (LANL, Stanford, ORNL…) • Microbial Database Center at TIGR • NMR facilities and isotope labeling capabilites • Mass Spectroscopy • Mouse Facility • RDP at Michigan State • National Center for High Performance Computing • Electron microscopes & other imaging facilites • X-ray stations at synchrotrons • Neutron diffraction stations (HFIR, LANSCE and SNS in future) • Several technology centers of technology development

  15. New Resourcesfacilities with a functional focus • Analysis of multiprotein complexes • Mapping and Modeling Gene Regulatory Networks • Microbial Growth & Interaction • Combinatorial chemistry for “chemi-genomics” functional probes • Molecular imaging: Cryo-EM, small angle X-ray … • Production Proteomics • Integration of computing resources in biology • Large-scale protein production • Mouse facility: new technologies, production transgenics, ENU mutagenesis …

  16. New Resourcescont’d: pilot facilities • Protein production: new method development, focus on systematic production for the community • High-throughput proteomics facility • New approaches to intermediate-scale imaging facilties (multi-protein scale: e.g. ribosome) • Analysis of nano-scale biological structures – genomics, chemistry and bio-control of 3-D structures and materials • Large-scale DNA sequencing of targeted regions

  17. Implementation and Managementsuggested principles • BERAC, ASAC and broad scientific community planning, involvement • Open, peer-reviewed competitive process • Strong integration of sites, laboratories and users • across disciplines and • National Laboratory-University-Industry boundaries • Pro-active evaluative process, pilot projects etc.. – try new approaches

  18. Summary & Conclusions • The science has changed • New capabilites and resources are needed • Its history and current thrusts position BER to make major contributions • GTL provides the rationale and nucleus of a broader program • BERAC and ASCAC should move to recommend specific action on a bold new program incorporating new facilities and resources

More Related