1 / 37

CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Belarussian. Nanotechnologies. CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK NATIONAL ACADEMY OF SCIENCES OF BELARUS. CARBON NANOTUBES FABRICATION IN DISPROPORTINATION REACTION. CO + CO  CO 2 + C E a = 5.5 eV. Reactants А + В. С + D Products.

trygg
Download Presentation

CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Belarussian Nanotechnologies CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK NATIONAL ACADEMY OF SCIENCES OF BELARUS

  2. CARBON NANOTUBES FABRICATION IN DISPROPORTINATION REACTION CO + CO  CO2 + C Ea = 5.5 eV

  3. Reactants А + В С + DProducts Энергетический выигрыш Nanomaterials Syntheses in Nonequilibrium Systems Energy Saving Activation energy external action Caloric effect External action: electron impact (gas discharge) radiation (laser chemistry)

  4. VIBRATIONAL NONEQUILIBRIUM IN CO UNDER APHVD CONDITIONS CO(v + 1) CO(v) CO(w-1) CO(w) CO(v) + CO(w)  CO(v+1)+ CO(w-1) Ev = E1v[1- E/E1 (v-1)]

  5. V-V PUMPING IN CO UNDER NONEQUILIBRIUM CONDITIONS v + 1 v w w-1

  6. NONEBOLTZMANN VIBRATIONAL DISTRIBUTION IN CO UNDER NONEQUILIBRIUM CONDITIONS CO(v*) + CO(v*)  CO2 + C Ev* + Ev* 5.5 eV

  7. Рис.1. Баланс энергии электронов в смеси N2:CO:H2 = 40:20:40; характерное значение приведенного электрического поля ВВРАД находится в диапазоне E/N=1-4 10-16 В см2 Fig. 1. Electron energy balance for N2:CO:H2 = 40:20:40 mixture

  8. Рис.2. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда Fig.2. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis: P=1 atm; mixture: N2:CO:H2=40:20:0; W=245 W; Q=500 Nl/h; Ldis=2 cm

  9. Рис.3. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда Fig.3. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis: P=1 atm; mixture: N2:CO:H2=40:20:1; W=245 W; Q=500 Nl/h; Ldis=2 cm

  10. Рис.4. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда] Fig. 4. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis: P=1 atm; mixture: N2:CO:H2=40:20:40; W=245 W; Q=500 Nl/h; Ldis=2 cm

  11. Atmospheric-pressure high-voltage discharge (APHVD) Designation • Carbon nanomaterials fabrication

  12. Fig. 1. Diagram of experimental setup:

  13. APHVD for carbon nanomaterials synthesis

  14. a) b) Interelectrode Gap Interelectrode Gap 4,5 4,5 30 mm 4 4 30 mm 3,5 3,5 Voltage, kV Voltage, kV 3 3 20 mm 20 mm 2,5 2,5 2 2 40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200 Current, mА Current, mА Voltage-current characteristics of APHVD: a)Methane-air mixture; b)Gas mixture after methane-to-hydrogen conversion device.

  15. CARBON NANOTUBES FABRICATION UNDER NONEQUILIBRIUM CONDITIONS IN APHVD CO(v) + CO(w)  CO2 + C Ev + Ew 5.5 eV

  16. Reactants А + В С + DProducts Energy saving Thermally Nonequilibrium Processes for CO production activation energy T0 Caloric effect of reaction T Recuperation process: - energy exchange through «intermediate agent» (filtrational superadiabatic combustion)

  17. Hydrocarbons to Hydrogen-CO conversion under nonequilibrium superadiabatic filtration combustion

  18. Filtration combustion reator 1 2 3 • Kerosene/air atomizer; • Mixing chamber; • Spark-plug; • Quartz reactor with ceramic bed; • Electric heater; • Condenser; • Condensate trap. 4 5 6 7

  19. H2, CO, CH4, CO2content in products of incomplete kerosene oxidation reaction

  20. Effect of equivalence ratio on kerosene-to-hydrogen conversion efficiency

  21. Fig.3. TEM image of several ropes of nanofibres. Scale bar 100 nm. Graphite cathode. Gas mixture after methane-to-hydrogen conversion device. Fig. 4. TEM image of several ropes of nanofibres. Scale bar -100 nm. Zirconium cathode. Methane-air mixture.

  22. . Fig. 5. TEM image of multi-walled nanotubes. Scale bar - 50 nm. Zirconium cathode. Gas mixture after methane-to-hydrogen conversion device.

  23. PROCESS SCALE-UP • SCALE-UP OF HYDROCARBONS TO CO-HYDROGEN CONVERSION • SCALE-UP OF THE ATMOSPHERIC PRESSURE DISCHARGE

  24. Hydrogen –CO mixtures Production Facility

  25. Plasma Hall accelerator for carbon nanomaterials fabrication

  26. Plasma Hall accelerator for carbon nanomaterials fabrication

  27. CARBON NANOMATERIALS FABRICATED UNDER NONEQUILIBRIUM CONDITIONS

  28. COMPOSITES WITH CARBON NANOMATERIALS A Fig. 1. Photo of polymer specimens: A – initial material, polyamide (PA-6); B – composite obtained by adding 0.5% carbon nanomaterial to initial PA-6. B Fig.2. Strain curves: 1 – initial PA-6; 2 – PA-6 stabilized with 0.15 mass % of irganox B-1171 3 – Stabilized PA-6 filled with carbon nanomaterial (CNM) – 0.5 mass % 4 – Stabilized PA-6 filled with carbon nanomaterial (CNM) – 1 mass % - up to 20% increase of strength parameters during stretching - broadening of strain range (from ~14% to 18-22%) to the instant of forced ductility development (neck formation), i.e. ability to withstand higher strains at load close to yield point. - reduction of tensile strain (4-6 times) (it is related to the presence of large (up to 20 m) particles of SiO2) а Tension, MPa 3 1 0.5% CNM 4 2 1% CNM Strain,%

  29. Strength limit, МПа POLYAMIDE FILMS PA-6 filled with nanomaterial Initial PA-6 Before thermal treatment After thermal treatment Relative extension near point of break Polyamide (PA-6) films filled with 0,1 % carbon nanomaterial before and after thermal treatment at 185 ˚C

  30. K = 4% K = 69% K = 91% Fig. 1. Pictures of neutral optical filters with CNM additives K = 4 0% Ordinary filter K = 54% Filter with CNM K = 69% Transmission factor deviation, T, % K = 4% K = 82% K = 91% K = 1% 400 750 Filters with CNM Ordinary filters NEUTRAL OPTICAL FILTERS Fig. 2. Transmission factor vs wave length Fig. 3. Transmission factor deviation T for filters with different light-transmission factor T

  31. Carbon Nanotubes Applications in Atomic Force Microscope

  32. NANOTOP-203 NANOTOP-204 OUR AFM DEVISES E-mailcpt@dnp.itmo.by NEW NANOTESTER-LV +Video System (SNU Precision Co.) NANOTOP is an atomic force microscope (AFM) in a complex with hardware and software necessary to analyse topography and micromechanical properties of a surface with nanometer resolution A design of Nanotechnologyof Lab. Of HMTI NASB Manufactured by Chemical Physics Technologies Ltd.

  33. Conclusions • Nonequilibrium atmospheric pressure plasma based technologies were developed for mass production of carbon nanomaterials; • Energy cost of MWCNT production was reduced to 100 kWh/kg based on the natural gas as the raw material; • The reliable operation of experimental facility with MWCNT production up to 10g/h based on different hydrocarbons as the raw materials was demonstrated; • The design of the pilot plant with MWCNT production up to 100g/h is ready for commercialization.

More Related