370 likes | 483 Views
Belarussian. Nanotechnologies. CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK NATIONAL ACADEMY OF SCIENCES OF BELARUS. CARBON NANOTUBES FABRICATION IN DISPROPORTINATION REACTION. CO + CO CO 2 + C E a = 5.5 eV. Reactants А + В. С + D Products.
E N D
Belarussian Nanotechnologies CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK NATIONAL ACADEMY OF SCIENCES OF BELARUS
CARBON NANOTUBES FABRICATION IN DISPROPORTINATION REACTION CO + CO CO2 + C Ea = 5.5 eV
Reactants А + В С + DProducts Энергетический выигрыш Nanomaterials Syntheses in Nonequilibrium Systems Energy Saving Activation energy external action Caloric effect External action: electron impact (gas discharge) radiation (laser chemistry)
VIBRATIONAL NONEQUILIBRIUM IN CO UNDER APHVD CONDITIONS CO(v + 1) CO(v) CO(w-1) CO(w) CO(v) + CO(w) CO(v+1)+ CO(w-1) Ev = E1v[1- E/E1 (v-1)]
V-V PUMPING IN CO UNDER NONEQUILIBRIUM CONDITIONS v + 1 v w w-1
NONEBOLTZMANN VIBRATIONAL DISTRIBUTION IN CO UNDER NONEQUILIBRIUM CONDITIONS CO(v*) + CO(v*) CO2 + C Ev* + Ev* 5.5 eV
Рис.1. Баланс энергии электронов в смеси N2:CO:H2 = 40:20:40; характерное значение приведенного электрического поля ВВРАД находится в диапазоне E/N=1-4 10-16 В см2 Fig. 1. Electron energy balance for N2:CO:H2 = 40:20:40 mixture
Рис.2. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда Fig.2. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis: P=1 atm; mixture: N2:CO:H2=40:20:0; W=245 W; Q=500 Nl/h; Ldis=2 cm
Рис.3. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда Fig.3. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis: P=1 atm; mixture: N2:CO:H2=40:20:1; W=245 W; Q=500 Nl/h; Ldis=2 cm
Рис.4. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда] Fig. 4. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis: P=1 atm; mixture: N2:CO:H2=40:20:40; W=245 W; Q=500 Nl/h; Ldis=2 cm
Atmospheric-pressure high-voltage discharge (APHVD) Designation • Carbon nanomaterials fabrication
a) b) Interelectrode Gap Interelectrode Gap 4,5 4,5 30 mm 4 4 30 mm 3,5 3,5 Voltage, kV Voltage, kV 3 3 20 mm 20 mm 2,5 2,5 2 2 40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200 Current, mА Current, mА Voltage-current characteristics of APHVD: a)Methane-air mixture; b)Gas mixture after methane-to-hydrogen conversion device.
CARBON NANOTUBES FABRICATION UNDER NONEQUILIBRIUM CONDITIONS IN APHVD CO(v) + CO(w) CO2 + C Ev + Ew 5.5 eV
Reactants А + В С + DProducts Energy saving Thermally Nonequilibrium Processes for CO production activation energy T0 Caloric effect of reaction T Recuperation process: - energy exchange through «intermediate agent» (filtrational superadiabatic combustion)
Hydrocarbons to Hydrogen-CO conversion under nonequilibrium superadiabatic filtration combustion
Filtration combustion reator 1 2 3 • Kerosene/air atomizer; • Mixing chamber; • Spark-plug; • Quartz reactor with ceramic bed; • Electric heater; • Condenser; • Condensate trap. 4 5 6 7
H2, CO, CH4, CO2content in products of incomplete kerosene oxidation reaction
Effect of equivalence ratio on kerosene-to-hydrogen conversion efficiency
Fig.3. TEM image of several ropes of nanofibres. Scale bar 100 nm. Graphite cathode. Gas mixture after methane-to-hydrogen conversion device. Fig. 4. TEM image of several ropes of nanofibres. Scale bar -100 nm. Zirconium cathode. Methane-air mixture.
. Fig. 5. TEM image of multi-walled nanotubes. Scale bar - 50 nm. Zirconium cathode. Gas mixture after methane-to-hydrogen conversion device.
PROCESS SCALE-UP • SCALE-UP OF HYDROCARBONS TO CO-HYDROGEN CONVERSION • SCALE-UP OF THE ATMOSPHERIC PRESSURE DISCHARGE
Plasma Hall accelerator for carbon nanomaterials fabrication
Plasma Hall accelerator for carbon nanomaterials fabrication
CARBON NANOMATERIALS FABRICATED UNDER NONEQUILIBRIUM CONDITIONS
COMPOSITES WITH CARBON NANOMATERIALS A Fig. 1. Photo of polymer specimens: A – initial material, polyamide (PA-6); B – composite obtained by adding 0.5% carbon nanomaterial to initial PA-6. B Fig.2. Strain curves: 1 – initial PA-6; 2 – PA-6 stabilized with 0.15 mass % of irganox B-1171 3 – Stabilized PA-6 filled with carbon nanomaterial (CNM) – 0.5 mass % 4 – Stabilized PA-6 filled with carbon nanomaterial (CNM) – 1 mass % - up to 20% increase of strength parameters during stretching - broadening of strain range (from ~14% to 18-22%) to the instant of forced ductility development (neck formation), i.e. ability to withstand higher strains at load close to yield point. - reduction of tensile strain (4-6 times) (it is related to the presence of large (up to 20 m) particles of SiO2) а Tension, MPa 3 1 0.5% CNM 4 2 1% CNM Strain,%
Strength limit, МПа POLYAMIDE FILMS PA-6 filled with nanomaterial Initial PA-6 Before thermal treatment After thermal treatment Relative extension near point of break Polyamide (PA-6) films filled with 0,1 % carbon nanomaterial before and after thermal treatment at 185 ˚C
K = 4% K = 69% K = 91% Fig. 1. Pictures of neutral optical filters with CNM additives K = 4 0% Ordinary filter K = 54% Filter with CNM K = 69% Transmission factor deviation, T, % K = 4% K = 82% K = 91% K = 1% 400 750 Filters with CNM Ordinary filters NEUTRAL OPTICAL FILTERS Fig. 2. Transmission factor vs wave length Fig. 3. Transmission factor deviation T for filters with different light-transmission factor T
NANOTOP-203 NANOTOP-204 OUR AFM DEVISES E-mailcpt@dnp.itmo.by NEW NANOTESTER-LV +Video System (SNU Precision Co.) NANOTOP is an atomic force microscope (AFM) in a complex with hardware and software necessary to analyse topography and micromechanical properties of a surface with nanometer resolution A design of Nanotechnologyof Lab. Of HMTI NASB Manufactured by Chemical Physics Technologies Ltd.
Conclusions • Nonequilibrium atmospheric pressure plasma based technologies were developed for mass production of carbon nanomaterials; • Energy cost of MWCNT production was reduced to 100 kWh/kg based on the natural gas as the raw material; • The reliable operation of experimental facility with MWCNT production up to 10g/h based on different hydrocarbons as the raw materials was demonstrated; • The design of the pilot plant with MWCNT production up to 100g/h is ready for commercialization.