1 / 31

バリオンのソリトン描像から見た K 中間子束縛核

バリオンのソリトン描像から見た K 中間子束縛核. based on hep-ph/0703100; arXiv:0710.0948. 西川哲夫 (東工大) 近藤良彦(國學院大学). ppK - : the lightest kaonic nuclei. Akaishi&Yamazaki, 2003. Kaonic nuclei: K bar -nucleus bound states formed by strong attraction in (K bar N) I=0

trygg
Download Presentation

バリオンのソリトン描像から見た K 中間子束縛核

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. バリオンのソリトン描像から見たK中間子束縛核バリオンのソリトン描像から見たK中間子束縛核 based on hep-ph/0703100; arXiv:0710.0948 西川哲夫 (東工大) 近藤良彦(國學院大学) 横断研究会@KEK 19/11/07

  2. ppK-: the lightest kaonic nuclei Akaishi&Yamazaki, 2003 • Kaonic nuclei: • Kbar-nucleus bound states formed by strong attraction in (KbarN)I=0 • Experimental evidence (?) by FINUDA collaboration: • peak in the invariant mass spectrum of Λp from • B.E.=115MeV, Γ=67MeV • Still controversial • Future experiment planned at J-PARC:

  3. Theoretical studies of ppK-

  4. Anit-kaon nucleus bound states? Large Nc QCD • QCD at Nc→∞: weakly interacting meson theory • Fundamental degrees of freedom: mesons (Diagrams representing meson propagation are dominant.) • Interaction between mesons〜O(1/ Nc) (t’Hooft, 1974) • Baryons emerge as topological solitons (“Skyrmion”) of the meson field. (Skyrme, 1961; Witten, 1983) c.f. derived from the string theory via AdS/CFT correspondence (Sakai&Sugimoto, 2005; Nawa, Suganuma, Kojo, 2007)

  5. Why soliton model? • The action, written in terms of NG boson fields U, respects chiral symmetry and reproduces anomaly (Wess-Zumino-Witten term). • KN interaction is unambiguously determined, once Fπ and e are fixed, e.g. fitted to MN and MΔ. • Hyperons can be well described as kaon-soliton bound states. Skyrme term NL-sigma model Wess-Zumino-Witten term

  6. Skyrmion

  7. Skyrmion (Skyrme, 1961) Skyrmion: topological soliton of the pion field • Ansatz for pion field: Isospin is oriented to the radial direction, “Hedgehog ansatz”

  8. or S3 S3 S3 , … n=2 n=1 Skyrmion • Hedgehog represents a mapping: classified by n (“winding number”). • Winding number: conserved ∵ Mappings with different n cannot be smoothly connected with each other • Winding number = Baryon number

  9. Zero mode (collective coordinate) quantization • Zero mode: displacement without changing the energy • invalidates the semi-classical approx. • full quantum mechanical treatment is necessary. • The Skyrme lagrangian is invariant under • Regarding A(t) as collective coordinate, quantize the rigid body rotation of the Skyrmion, Nucleon spectrum as rotational spectrum of a Skyrmion

  10. Bound kaon approachto the strangeness in the Skyrme model

  11. bound kaon Bound kaon approach in the Skyrme model (Callan and Klebanov, 1985) Hyperon • Kaon’s equation of motion under the b.g. of Skyrmion • Bound states of K-Skyrmion • Quantize the collective rotation of the bound system • Hyperon mass spectrum

  12. Baryon masses Callan and Klebanov, 1985; Rho, Riska and Scoccola, 1992 (mπ=0,FK/Fπ=1.23) • Set I: Fπ and e are fitted to MN and MΔ(Adkins, Nappi&Witten). • Set II: fitted to MΛ(1405) and MΔ (present study)

  13. Description of ppK- systemin the bound kaon approach

  14. Description of the ppK- system Hedgehog skyrmion boundkaon

  15. Description of the ppK- system • Kaon’s EoM for Skyrmions at fixed positions (adiabatic approximation) kaon’s energy • Solve the pp radial motion rough estimate of the binding energy of ppK- VNN+ωK R R

  16. R Derivation of the kaon’s EoM • Ansatz for chiral field • U(1)and U(2): hedgehogs centered at r =±R/2 • UK: kaon field

  17. Derivation of the kaon’s EoM • Substitute the ansatz into the action • Expand up to O(K2) and neglect O(1/Nc) terms • Lagrangian for K under the background B=2 Skyrmion (KN interaction is unambiguously determined, once the ansatz for the chiral field is given.)

  18. Derivation of the kaon’s EoM • Collective coordinate quantization projection of the skyrmion rotation onto (pp)S=0 • Average the orientation of Spherical partial wave analysis is allowed: EoM for the kaon in S-, P-,..wave

  19. Results

  20. Energy of K- normal nuclei • Dependence on the choices, Set I or II, is weak. • S-wave K- is strongly bound even for relatively large R, e.g. • BK= 233MeV (R=1.5 fm) • BK= 139MeV (R=2.0 fm) R=2.0 fm BK= 139MeV

  21. R Distribution of K- and baryon # density Molecular nature

  22. K- K- ppK-: “molecular” state Molecular states ⇒ deep binding of K- approaching proton Suppose Λ(1405) is an “atomic” state

  23. Origin of the strong binding: WZW term

  24. Role of the Wess-Zumino-Witten term • Origin of the WZW term: anomaly in QCD • Effective theory should reproduce anomaly in QCD ⇒ WZW term • Effects: • An extra symmetry of the chiral Lagrangian is removed. • Skyrmion behaves like a fermion. • KN Interaction from the WZW term, • attractive potential VWZW to negative strangeness states • Correct mass spectrum of hyperons • Λ(1405) is bound owing to the VWZW alone. • gives a double-well potential for K- coupled with pp

  25. p-p potential with and without K- pp potential without K- (VNN) pp potential in ppK- (VNN+VK) Energy of K- bound to pp (VK=ωK-mK)

  26. p-p potential with and without K- Akaishi&Yamazaki,2007 pp potential without K- (VNN) pp potential in ppK- (VNN+VK) Energy of K- (VK=ωK-mK)

  27. p-p radial motion • Assume p-p radial motion is governed by the Hamiltonian: • From VNN+ωK-mK R

  28. Parameter set of Fπ and e • Set I: fitted to MN and MΔ. • Set II: fitted to MΛ(1405) and MΔ Binding energy of ppK-and its decomposition

  29. Conclusion • π中間子場のソリトンとして表された陽子2個に結合したK-のエネルギーは著しく小さくなり得る。 (Wess-Zumino-Witten項が大きな役割を果たす。) • K-の空間分布は、ppK-が分子状態であることを示唆する。 • K-が生む非常に強い引力が、斥力的なppポテンシャルに勝って、ppK-を深く束縛させる。 〜我々のアプローチでのシナリオ〜

  30. K- p π Σ K- p p π Σ p A comment • Λ(1405)は必ずしも KbarN 束縛状態ではない。K-soliton全体の回転を量子化して得られた状態。 • 我々のアプローチ • 2個のソリトンを独立に回して量子化し、ppに射影 • K-を束縛させる。 • より適切には、新たに集団座標を導入し、

  31. total Skyrme term NL-sigma term The action of the Skyrme model • Skyrme term (included by hand) stabilizes solitons. • Wess-Zumino-Witten term • remove an extra symmetry of the chiral Lagrangian • makes a Skyrmion behave like a fermion Skyrme term NL-sigma model Wess-Zumino-Witten term

More Related