200 likes | 216 Views
This paper explores the generation of copious electron-positron pairs through the interaction of high-energy laser pulses with colliding foils. The study discusses the background and motivations, QED effects at ultra-high laser intensities, and the production of ultra-bright γ-photon emission. The results provide insights into the potential applications of this phenomenon in astrophysics and high-energy physics research. Supported by NSFC, 973, SCP, and EPSRC.
E N D
Copious Electron-Positron Pairs Generation with PW Laser Pulses Han-Zhen Li1 & Tong-Pu Yu1,2* (李汉臻,余同普) 1Department of Physics, National University of Defense Technology, Changsha, China 2 SUPA, Department of Physics, University of Strathclyde, Glasgow, UK 06th-8th, Dec., 2017 1stworkshop on applications of high energy CEPC synchrotron radiation source @IHEP, Beijing China *tongpu@nudt.edu.cn; tongpu.yu@strath.ac.uk
Outline • Background and Motivations • QED Effects at Ultra-High Laser Intensities • Ultra-Brightγ-photon Emission & Copious Pair Production in Two Laser-Driven Colliding Foils • Conclusions This work is financially supported by NSFC, 973, SCP, and EPSRC. 2
Ionization Plasma Acceleration And Radiation QED Physics Background and Motivations The laser becomes more and more powerful*. Laser-Matter Interaction Different regimes of laser-matter interaction. History of laser intensity. 3 *See ELI, Apollon, XCELS, SIOM lasers, Vulcan, CoReLS, and ICAN.
Background and Motivations Extreme Light Infrastructure (ELI)Project: Laser power: P= 1018 W Laser intensity: I> 1025 W/cm2 Laser electric field: E> 8.5×1013 V/cm Bright X-rays and gamma rays ICF Electron-positron pairs Extreme conditions for astrophysics and high –energy physics researches* Particle acceleration 4 *Mourou, et al., Rev. Mod. Phys. 78, 309–371 (2006). Ruffini, et al ., Phys. Rep. 487, 1-140 (2010).
QED effects at ultra-high laser intensities γ 光子及 正负电子对 霍金-安鲁 辐射 施温格 极限 光子-光子 散射 高阶谐波 产生 The geometry of the incoming laser pulses (k1, k2, k3) and outgoing pulse (k4) The Generation of higher harmonics from the quantum vacuum The production of electron positron pairs from low energy electron-laser interactions Transmission energy against the momentum and cordinate schematics of the Unruh radiation Phys. Rev. D14 870 (1976) Nucl. Instrum Meth. A 660(1): 31-42 (2011) Phys. Rev. A 362 1 (2006) J. Mod. Opt. 52 305 (2005) Phys. Rev. Lett. 96 083601 (2006) 6
QED effects at ultra-high laser intensities • 无量纲化的激光强度势矢量 • 辐射阻尼变得异常重要 • QED参数 • 强场极限 7 Bulanov, et al. Nucl. Instr. Meth. Phys. Res 660(1): 31-42 (2001).
Typical process for pairs production Processes for e--e+ pair production in laser target interactions: Trident process: energetic electrons interacting with the high-Z nuclei of a thin target; Bethe-Heitler (BH) process*: bremsstrahlung radiation interacting with the high-Z nuclei of a thicker target; Breit-Wheeler (BW) process†: two steps: 1, nonlinear Compton scattering of multiple laser photons by an electron; 2, the gamma photons interacting with the low-energy laser photons. Multi-photon BW process at ultra-intense laser plasma interaction 8 *PiazzaRev. Mod. Phys. 84, 1177 (2012); Breit & Wheeler, Phys. Rev. 46, 1087 (1934); †Bethe & Heitler, Proc. R. Soc. Lond. A 146, 83 (1934).
Typical process for pairs production Why the nonlinear B-W Process ? 1、Much larger mean free path for ultra-relativistic electrons from thin low-Z targets 2、Much larger cross-section at ultrahigh laser intensities 9 Bulanov, Physics 87(6): 4412-4418.
Pair production with ultra-intense lasers Bethe-Heitler (BH) process (to name just a few): Liang, et al. Phys. Rev. Lett. 81, 4887 (1998). Cowan, et al. Laser Part. Beams 17, 773 (1999). Gahn, et al. Appl. Phys. Lett. 77, 2662 (2000). Chen, et al. Phys. Rev. Lett. 102, 105001 (2009). Sarri, et al. Nature Communications. 6, 6747 (2015). Breit-Wheeler (BW) process (to name just a few): Burke, et al. Phys. Rev. Lett. 79, 1626 (1997).SLAC experiment Kirk, et al. PPCF 51, 085008 (2009). Fedotov, et al. Phys. Rev. Lett. 105, 080402 (2011). Bulanov, et al. Phys. Rev. Lett. 104, 220404 (2010). Nerush, et al. Phys. Rev. Lett. 106, 035001 (2011). Gonoskov, et al. Phys. Rev. Lett. 111, 060404 (2013). Ridgers, et al. Phys. Rev. Lett. 108, 165006 (2012). Foil target Pike, et al. Nature Photonics 8, 434–436 (2014). Blackburn, et al. Phys. Rev. Lett. 112, 015001 (2014). Laser-electrons Luo, et al. Phys. Plasmas 22, 063112 (2015).Foil target Chang, et al. Phys. Rev. E 92, 053107 (2015). Foil target Li, et al. EPL, 110 , 51001 (2015). Grismayer, et al.Physics of Plasmas 23, 056706 (2016). Gu, et al. New J. Phys. 18, 113023 (2016). Kostyukova, et al. Phys. Plasmas, 23, 093119 (2016). Foil target Zhu, et al. Nature Communications 7, 13686 (2016). NCD plasmas Lobet, et al. Phys. Rev. Accel. Beams, 20, 043401 (2017). Laser-electrons 10
Copious pair production with PW lasers in NCD plasmas Nat. Commun. 7, 13686 (2016) Scheme A: Schematics of copious e--e+ pair production in a double-cone target filled with near-critical-density plasmas*. Lasers: a0=150, λ0=1μm,σL=5μm,τL=8T0 Al cones: R=6μm, r=1.5μm, L=50μm Near-critical-density plasmas: ne=3nc 11 *Zhu & Yu, et al., Nature Communications 7, 13686 (2016).
Dense positron production in two colliding foils Scientific Reports, in press (2017) Scheme B: BW process Lasers: a0=250, λ0=1μm,σL=5μm,τL=10T0 Diamond-like foils: R=3μm, l=0.32μm, ne=200nc Elliptically polarized laser radiation pressure acceleration of two colliding foils for bright gamma rays emission and positrons productions. 12 *Li & Yu, et al., Scientific Reports, in press (2017).
Dense positron production in two colliding foils Laser Acceleration (Stage I) Foil Transparency (Stage II) The Nonlinear BW (Stage III) Ey ne E×nγ 13 *Li & Yu, et al., Scientific Reports, in press (2017).
Dense positron production in two colliding foils (Stage II) The ion motion equation can be described by: Solving the above equation, we get the relativistic factor: where 14 *Li & Yu, et al., Scientific Reports, in press (2017).
Dense positron production in two colliding foils (Stage II) When the plasma frequency becomes smaller than the laser frequency, the relativistic slef-introduced Transparency occurs. The foil expands transversely And longitudinally in space. Assuming is the shell transverse expansion Factor, we can rewrite the condition of the foil transparency as following: It is in excellent agreement with the PIC simulations! 15 *Li & Yu, et al., Scientific Reports, in press (2017).
Dense positron production in two colliding foils (Stage III) Key parameters for photon emission and positron production. Density distribution of photons and evolution of photon energy and total numbers. 16 *Li & Yu, et al., Scientific Reports, in press (2017).
Dense positron production in two colliding foils (Stage III) 17 *Li & Yu, et al., Scientific Reports, in press (2017).
A conceptual laser electron-positron collider W.P.Leemans et.al., Phys.Today 62,44(2009) Laser wakefield acceleration of electrons to hundreds of GeV or even TeV, Great challenge! RAL (2018)、SIOM (2018-2019)、ELI-NP(2018-2019) 15 (>10 PW Lasers)
Conclusions • QED effects at ultra-intense laser intensities: Radiation reaction effect and the multi-photon Breit-Wheeler process • Scheme A: Bright γ rays emission and dense e--e+pair production in near-critical-density (NCD) plasma (double lasers + double cones with NCD plasmas) • Scheme B: Ultra-bright γ photons emission and copious e--e+pair production by two colliding diamond-like carbon (DLC) foils (double lasers + double foils) Many potential applications in High-energy-density physics Laboratory astrophysics, and Nuclear physics, etc. The created extreme conditions may be useful for lab. astrophysics and HEP! 18
Acknowledgements • 感谢国家自然科学基金“优青”和面上 • 感谢国防科工局“科学挑战计划” • 感谢国家重点研发计划(973)子课题 • 感谢国家自然科学基金重大研究计划 • 感谢湖南省“杰青”项目 对本研究的大力支持
Thank you for your attention! *tongpu@nudt.edu.cn, tongpu.yu@strath.ac.uk