1 / 25

MicroMegas R&D for DHCAL: Test Beam Results and Simulation

Detailed results from beam tests and simulations of MicroMegas for Digital Hadron Calorimeters (DHCAL). Includes analog and digital readout, gas mix, setup, and preliminary efficiency measurements.

tsawyer
Download Presentation

MicroMegas R&D for DHCAL: Test Beam Results and Simulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MicroMegas DHCAL : Résultat des tests en faisceau et simulation Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise EspagilièreRaphael GalletNicolas Geffroy Claude GirardRichard HermelKostas Karakostas (invité)Yannis Karyotakis Inocencio MonteiroFabrice PeltierJulie PrastJean Tassan Guillaume Vouters Catherine ADLOFF Laboratoire d’Annecy-le-Vieux de Physique des Particules SOCLE

  2. Outline • MicroMegas R&D for DHCAL • Why MicroMegas? • Analog Readout • Long source run with 55Fe • Test Beam • Digital readout • Simulation • Conclusion SOCLE

  3. or pads Steel top is part of the absorber MicroMegas • Micro mesh gaseous structure cell = 1cm2 PCB pad • Description: • Gas mix: Argon+Isobutane • Drift and Mesh HV < 500 V • High detection rate • Robust, cheap (industrial process) • Thickness: 3,2 mm • Delicate functioning: sparks • Readout: • Analog for characterisation GASSIPLEX + CENTAURE DAQ • Digital HARDROC or DIRAC + Digital InterFace (DIF) board +EUDET DAQ2 or CrossDAQ 12x32 cm2384 pads • 325 LPI mesh • spacers : 120 m heigh 300 m diameter Bulk technology from R. De Oliveira & O. Pizzirusso SOCLE

  4. X-ray peak Entries Slope = - 4.9 ADC/mbar = - 2 fC/mbar Mean (ADC Counts) escape peak pedestal ADC Counts A. Espargilière Pressure (mbar) K. Karakostas X-ray Response • Set-up: • 55Fe source (5.9 keV) • Trigger on mesh • analog readout FWHM (%) Mean (ADC Counts) VMesh (V) Gain : up to 10 000 Energy resolution : down to 8.5 % (FWHM = 19.6)% VDrift = VMesh + 70 V EDrift = 233 V/cm VMesh (V) K. Karakostas VMesh = 420 V EMesh = 35 kV/cm VDrift = 470 V EDrift = 167 V/cm SOCLE

  5. H2 line at SPS-CERN (August 2008) With the IRFU team (P. Colas, D. Attié, S. Turnbull) T9 line at PS-CERN (November 2008 TB) • The data • 200k Pions @ ~7 GeV • The data • 200k Pions @ 200 GeV • 200k Muons @ ~200 GeV • 250k Pions with 1 steel block + absorbers Test Beam 2008 • From dream to reality • Characterisation of theprototypes: • efficiency and multiplicity • pads / prototypes uniformity • X-talk studies • behaviour in hadronic shower A. EspargilièrePreliminary Results SOCLE

  6. Test Beam Setup • Trigger: 3 scintillators in coincidence • 3 MicroMegas 6x16 pads • 1 MicroMegas 12x32 pads • Steel absorber option analog readout SOCLE

  7. all triggers MIP MPV ~ 45 fC E Nb of Events platinum events E (ADC counts) MPV X (cm) HV Pad Number of Pads Normalised MPV Y (cm) Preliminary Results • MIP Signal observed on every Single Channel Pedestal: aligned online (0.2 fC RMS) constant over time average sigma = 0.6 fC  Good noise conditions! MPV variation under study: • Electronics channels disparity • Drift space homogeneity SOCLE

  8. gold events x x x x Y Y Y Y Preliminary Results • Efficiency Measurements: Threshold : 2.8 fC = 0.06 MIP MPV SOCLE

  9. Preliminary Results • Multiplicity < 1.1 • 2 chambers • ~ 75k gold events / chamber • threshold : 2.8 fC = 0.06 MIP MPV gold events gold events SOCLE

  10. MicroMegas with Digital Readout • PCB with DIRAC1 64 channels ASIC(R. Gaglione, IPNL) 3 thresholds on 8 bits each, 8 events memory 2 Gains  6 fC to 200 fC or 100 fC to 10 pC Digital link to DAQ (possibility to chain detectors) Bulk from R. De Oliveira & O. Pizzirusso First operational Bulk MicroMegas with embedded readout electronics ! DIRAC Sparks protections mask for bulk laying 8x8 pads with bulk SOCLE

  11. MicroMegas with Digital Readout • Tested during the August 2008 TB • Very promising results! Beam Profile when moving the X-Y table MicroMegas Lower Threshold = 19 fC ethernet readout • Future test beam:Need a stack of chambers to check efficiencies SOCLE

  12. MicroMegas with Digital Readout • PCB with 4 HARDROC1 64 channels ASIC 3 layers of 8x32 cm2 HARDROC1 sparks protections Mesh side bulk SOCLE

  13. PCB with ASICs MicroMegas with Digital Readout • Tested during the November 2008 TB • Readout : DIF board • Separated from the slab • For large number of ASICsHARDROC, DIRAC and also SPIROC and SKYROC • DIF task force interfaceUSB or DAQ2 • Excellent work from Guillaume Vouters (DIF) and Christophe Combaret (CrossDaQ) • Difficulties to get the bulk stable • Data currently under study SOCLE

  14. Simulation (J. Blaha) • Simulation tools • SLIC full simulation (Geant 4)‏ • Analysis using JAS3 • 2008 Test beam setup is being simulated • Comparison with real data • Better understanding of our detector • Preparation for next test beam 200 GeV Pions Simulation Test beam 30 cm iron absorber in front SOCLE

  15. Simulation • DHCAL with MicroMegas • HCAL dimensions: • 1m3 HCAL prototype (40 planes of 1m2, 4.5 I, 1m3)‏ • Large HCAL (80 planes of 2m2, 9 I, 8m3) • ‏1.9 cm thick steel absorber • Thickness of active layer: 6 mm • 3 mm Gas: 95 % Argon + 5 % Isobutane • 2.8 mm PCB + ASICs‏ • Different readout cell size: • 0.5 x 0.5 cm2 • 1 x 1 cm2 • 2 x 2 cm2 • 4 x 4 cm2 SOCLE

  16. 8 m3 • Energy spectrum: example 100 GeV pions 1 particle/pad Contribution normalised to 1 2 particles/pad 3 particles/pad # Pads # Pads 4 particles/pad 5 particles/pad 6 particles/pad Energy per Pad (GeV) Energy per Pad (GeV) • Number of Particle contributing to a Hit (E > 0 GeV) 3 GeV 10 GeV 50 GeV 100 GeV Fraction of Pads Number of particles per pad SOCLE

  17. 8 m3 • Energy resolution : example 10 GeV pions Digital : Hit Threshold = 0 GeV Analog # Events # Events Energy (GeV) # Hits SOCLE

  18. From 8 m3 HCAL to 1 m3 Prototype • 8 m3 • 1 m3 Analog Analog Digital Digital Hit Threshold = 0 GeV Hit Threshold = 0 GeV example : 10 GeV pions Digital Digital Hit Threshold = MIP MPV Hit Threshold = 1 MIP MPV SOCLE

  19. 1 m3 • Threshold studies : Correlation Digital : Hit Threshold = 0 GeV Digital : Hit Threshold = 1 MIP MPV Digital : Hit Threshold = 4.5 MIP MPV # hits Energy (GeV) SOCLE

  20. Analog : 0.054 + 58%/√E Digital : 0.022 + 56%/√E E  50 GeV E/E E/E Pion Energy (GeV) Threshold (MIP MPV) 1 m3 • Threshold studies : Energy Resolution SOCLE

  21. Conclusion • MicroMegas R&D for DHCAL very active! • ASIC developments • Optimised prototypes, first digital readout prototypes • Tests Beam: very promising results (still a lot to analyse) • Future Test Beam in 2009 … • Towards • 1m2 prototype • Calorimeter prototype of 1m3 • In parallel • Work on simulation of TB prototypes, future 1m3 and leakage less 8m3Future : Different concept geometry, pads size… SOCLE

  22. HCAL Dimension Parameters • SiD Example  Large active media surfaces (eg 1.8x3.5 m2)Total surface ~ 3000 m2 SOCLE

  23. ILC: High Precision Measurements • Most widespread approach for calorimetry:Particle Flow Algorithms where jet resolution depends on • cluster separation • track-cluster matching • HCAL choice of active media • ANALOG HCAL: Scintillators+SiPM • DIGITAL HCAL: Gaseous DetectorsRPC or GEM or MicroMegas • Imaging calorimeters:Compact showers High granularity SOCLE

  24. Analog or Digital? Jet energy resolution (perfect PFA) Hadronic energy resolution KEK for GLD H MATSUNAGA Pramana J. Phys., Vol 69, No 6, p 1057-1061 dec 2007 Optimal for PFA: “semi-digital” (2bits) readout with 1cm2 cells SOCLE

  25. DHCAL: Gaseous Detectors • Performance studies • MIP efficiency • Hit multiplicity • Ease of calibration (30 M cells  30 M elect. channels) • Recovery time (RPC) • Discharge rate (GEM, MicroMegas) • Behaviour in hadronic shower • Operating in high magnetic field • Technological challenges • Large surfaces • Thickness < 8 mm • Low cost and industrial process • Aging: no performances degradation  Uniformity /detector /cell SOCLE

More Related