940 likes | 1.13k Views
INSTABILITY MECHANISMS of ELECTRICALLY CHARGED LIQUID JETS in ELECTROSPINNING vs. ELECTROSPRAYING. A.L. Yarin Department of Mechanical Eng. UIC, Chicago. Acknowledgement. D.H. Reneker E. Zussman A.Theron S.N. Reznik A.V. Bazilevsky C.M. Megaridis R. Srikar, S.Sinha Ray
E N D
INSTABILITY MECHANISMS of ELECTRICALLY CHARGED LIQUID JETS in ELECTROSPINNING vs. ELECTROSPRAYING A.L. Yarin Department of Mechanical Eng. UIC, Chicago
Acknowledgement • D.H. Reneker • E. Zussman • A.Theron • S.N. Reznik • A.V. Bazilevsky • C.M. Megaridis • R. Srikar, S.Sinha Ray • Israel Science Foundation, Volkswagen Stiftung-Germany, National Science Foundation through grants NSF-NIRT CBET 0609062 and NSF-NER-CBET 0708711-U.S.A.
Outline 1. Basic physics of the process: bending 2. Branching 3. Multiple jets 4. Needleless electrospinnning 5. Buckling 6. Self-assembly: Nanoropes and crossbars 7. CNT-containing nanofibers 8. Co-electrospinning: nanotubes&nanofluidics
Modern reproduction Splaying
Basic Physics of Electrospinning 30,000 Volt
Process Initiation: Taylor Cone Yarin A L, Reneker D H, Kombhongse S, J. App. Phys. 90, 2001
Experimenton Jet Initiation # 1 # 3 # 2
2.0 10 10 9 9 8 7 8 1.5 6 7 6 5 5 4 4 z 3 1.0 3 2 2 1 1 0.5 0 1.0 0.5 -1.0 -0.5 0 r Experiment vs. Theory
Theoretical Modelof Jet Initiation The Reynolds number The electrical Bond number The initial contact angle
1.5 2 1.0 1 z 0.5 1.5 2.0 0.5 1.0 0 r Theoretical Model of JetInitiation z
Theoretical Modelof Jet Initiation 1 – radial velocity at the surface 2 – vertical velocity at the surface
Theoretical Modelof Jet Initiation Critical electric Bond number vs. static contact angle
Theoretical Modelof Jet Initiation Predicted electric current vs. applied voltage
Theoretical Modelof Jet Initiation Predicted convective and conductive parts of the electric current
Electrically-driven bending instability The “Taylor cone” droplet A collection of point charges cannot be maintained at equilibrium: Earnshaw theorem Jet initiation The Electrospinning Mechanism – Dielectric constant – Electric conductivity – Surface tension a0– Droplet diameter – Viscosity – Mass density V0– Characteristic fluid velocity in droplet V*– Characteristic velocity in jet l– Characteristic length scale H– Hydrodynamic characteristic time C– Characteristic charge relaxation time Re – Reynolds number • Reneker D H, Yarin A L, Fong H, Koombhongse S, J. App. Phys. 87, 2000 • Reznik S N, Yarin A L, Theron A, Zussman E, J. Fluid Mech. 516, 2004
Basic Equations: Discretized Quasi-one-dimensional Equations
Electrically-driven Bending Instability time time time i =1 i = 101 i =2 i= N i =1 F0 ~ q.E Fc ~ coulomb force Fve ~ velocity difference i+ 1 Fcap ~ surface tension effects from local curvature and cross section i d i + 1 i - 1 i i - 1 i = 1 i = 1
Electrospinning of Polymer Solutions Reneker D H, Yarin A L, Fong H, Koombhongse S, J. App. Phys. 87, 2000 Yarin A L, Koombhongse S, Reneker D H, J. App. Phys. 89, 2001
Electrospinning of Polymer Solutions Reneker, Yarin, Fong, Koombhogse
Electrospinning of Polymer Solutions Reneker, Yarin, Fong, Koombhongse
16.5 ms 18 ms 0 ms 22 ms 31.5 ms 32 ms 24.5 ms 30.5 ms Reneker D H, Yarin A L, Fong H, Koombhongse S, J. App. Phys. 87, 2000 38.5 ms 37.5 ms
Nanofiber Garlands Electrospinning of PCL photographed at 2000fps (playback speed = 30fps) Reneker D H, Kataphinan W, Theron A, Zussman E, Yarin A L, Polymer 43, 2002
As-spun Polymer Nanofibers Polyacrylic acid PEO Siloxane 8m 1m 1m PPV PCL PVA 20m 2m 200nm
Branching in PCL Electrospinning Yarin A L, W. Kataphinan, D.H. Reneker J. Appl. Phys. 98, 064501 (2005)