1 / 11

Kriptografi Kunci Publik ( Asimetry Key) Algoritma Elgamal Materi 9

Kriptografi Kunci Publik ( Asimetry Key) Algoritma Elgamal Materi 9. Pemrograman Jaringan. Dosen : Eko Prasetyo Teknik Informatika UMG 2012. Pendahuluan.

tudor
Download Presentation

Kriptografi Kunci Publik ( Asimetry Key) Algoritma Elgamal Materi 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KriptografiKunciPublik (Asimetry Key)AlgoritmaElgamalMateri 9 PemrogramanJaringan Dosen: EkoPrasetyo TeknikInformatika UMG 2012

  2. Pendahuluan • DibuatolehTaherElgamal (1985). Pertama kali dikemukakandidalammakalahberjudul"A public key cryptosystem and a signature scheme based on discrete logarithms”

  3. Nilaikeamananalgoritma • Keamananalgoritmainiterletakpadasulitnyamenghitunglogaritmadiskrit. • Masalahlogaritmadiskrit: Jikapadalahbilangan prima dangdanyadalahsembarangbilanganbulat. carilahxsedemikiansehingga gxy (mod p) PropertialgoritmaElGamal: 1. Bilangan prima, p (tidakrahasia) 2. Bilanganacak, g ( g < p) (tidakrahasia) 3. Bilanganacak, x (x < p) (rahasia, kunciprivat) 4. y = gx mod p (tidakrahasia, kuncipublik) 5. m (plainteks) (rahasia) 6. adanb (cipherteks) (tidakrahasia)

  4. AlgoritmaElgamal • PembangkitanKunci • Pilihsembarangbilangan prima p ( pdapatdi-sharediantaraanggotakelompok) • Pilihduabuahbilanganacak, gdanx, dengansyaratg < pdan 1 xp – 2 • Hitungy = gx mod p. Hasildarialgoritmaini: Kuncipublik: PU {p, g, y}  Enkripsi Kunciprivat: PR {p,x}  Dekripsi

  5. AlgoritmaElgamal AlgoritmaEnkripsi • Susunplainteksmenjadiblok-blokm1, m2, …, (nilaisetiapblokdidalamselang [0, p – 1]. • Pilihbilanganacakk, yang dalamhalini 1 kp – 2. • Setiapblokm dienkripsidenganrumus a = gk mod p b = ykm mod p Pasanganadanbadalahcipherteksuntukblokpesanm. Jadi, ukurancipherteksdua kali ukuranplainteksnya. AlgoritmaDekripsi • Gunakankunciprivatx untukmenghitung(ax)– 1 = ap – 1 – x mod p • Hitungplainteksmdenganpersamaan: m = b/ax mod p = b(ax)– 1 mod p

  6. Contoh 1 • Pesan yang akandikirimsecararahasiaadalah ‘KAMPUS’ menggunakanalgoritma ELGAMAL • Nilai p yang digunakanadalah 131 • Nilai g = 3, g < p • Nilai x = 5, 1 ≤ x ≤ p-2

  7. ContohalgoritmaElGamal PembangkitanKunci • y = gx mod p = 35 mod 131 = 112 • KunciPublik: PU = {p, g, y} = {131, 3, 112}  Enkripsi • KunciPrivat: PR = {p, x} = {131, 5}  Dekripsi Pesan: KAMPUS, nilaikode ASCII-nya75 65 77 80 85 83 Enkripsipesan (lakukansatupersatuuntuksetiapblok) • Untukm = 75 • Generate k = 7, 1 ≤ k ≤ p-2 • a = gk mod p = 37 mod 131 = 91 • b = yk.m mod p = 1127.75 mod 131 = 105

  8. ContohalgoritmaElGamal ProsesDekripsi • Cipher (a,b) = (91,105) • (ax)-1 = ap-1-x mod p • = 91131-1-5 mod 131 = 91125 mod 131 • = (915 mod 131)25 mod 131 • = 8025 mod 131 • = (805 mod 131)5 mod 131 • = 605 mod 131 = 113 • m = b * (ax)-1 mod p • = 105 * 113 mod 131 = 11865 mod 131 = 75 ‘K’

  9. Contoh 2 • Pesan yang akandikirimsecararahasiaadalah ‘KAMPUS’ menggunakanalgoritma ELGAMAL • Nilai p yang digunakanadalah 131 • Nilai g = 3, g < p • Nilai x = 7, 1 ≤ x ≤ p-2

  10. Tabel ASCII

  11. Any Question ?

More Related