1 / 25

Scalable bipolar transistor modelling with HICUM L0

Scalable bipolar transistor modelling with HICUM L0. S. Frégonèse, D. Berger * , T. Zimmer, C. Maneux, P. Y. Sulima, D. Céli * Laboratoire de Microélectronique IXL, FRANCE * ST Microelectronics, FRANCE. Outlines. Introduction Geometry Scaling Modelling strategy Why HICUM L0 ?

tudor
Download Presentation

Scalable bipolar transistor modelling with HICUM L0

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Scalable bipolar transistor modelling with HICUM L0 S. Frégonèse, D. Berger*, T. Zimmer, C. Maneux, P. Y. Sulima, D. Céli* Laboratoire de Microélectronique IXL, FRANCE * ST Microelectronics, FRANCE HICUM WORKSHOP 2004

  2. Outlines • Introduction • Geometry Scaling • Modelling strategy • Why HICUM L0 ? • HICUM L0 & L2 • Similarity between L2 and L0 • L0 equations • Applications • Extraction • Impact of emitter via resistances • Impact of corner rounding • DC & AC measurement and model comparison • Conclusion • Perspectives HICUM WORKSHOP 2004

  3. r0 WE0 LE0 gC Mask E B C Introduction : Geometry scaling • Transistor modelling with a function of emitter length and width as parameters • Circuit performances optimisation • Model many transistors with one parameter set • Important parameter for scalable modelling of the internal transistor • Real length and width ( WE0 and LE0 ) • Spacer have to be taken into account • Effective diffusion length under emitter window gC • Corner rounding • Low size transistor • SIC window • Internal & external base collector capacitancesmodelling • Base Collector current HICUM WORKSHOP 2004

  4. Introduction : Modelling Strategy HICUM WORKSHOP 2004

  5. Introduction : Why HICUM L0 ? • A new model combining • Simplicity of Gummel Poon: • Less computational effort (internal nodes number, L0 : 3,L2 : 5) • Extraction is easier • Major features of HICUM • Accurate charge description • Self heating is taken into account • Useful for: • Quick evaluation of the basic circuit functionality • For non critical transistor HICUM WORKSHOP 2004

  6. HICUM L0 & L2 :Similarity between L0 and L2 • Simplifications • Charge: • Simplification of charge modelling in transfer current source • DC and AC are uncorrelated. • Internal base node is suppressed • External base resistance and internal base resistance are merged together • External base-emitter capacitance and internal base-emitter capacitance are grouped together • Current source are merged: • Peripheral and internal base-collector • Peripheral and internal base-emitter • Others effects: • Substrate network • Parasistic transistor • NQS effects • Base-Emitter tunnelling current source HICUM WORKSHOP 2004

  7. HICUM L0 & L2 :Similarity between L0 and L2 • AC Charge formulation unchanged • Capacitance formulation • Transit time formulation • At low & high current • Critical current • Internal base resistance: • Temperature dependence & self heating Geometry dependent zero bias value is unchanged Bias variation function is simplified HICUM WORKSHOP 2004

  8. HICUM L0 & L2 : L0 Equations - Transfert current source in HICUM L0 -Transfer current source in HICUM L2 - Low to medium current : -Low current: - Low current: 1 scalable parameter 1 constant parameter 2 scalable parameters HICUM WORKSHOP 2004

  9. HICUM L0 & L2 : L0 Equations • - Charge increase for DC regime: • AC et DC are uncorrelated - Charge increase for AC regime: Same equation as L2 fcs function parameter is extracted from RCI0 extraction ( from AC characteristics) HICUM WORKSHOP 2004

  10. Applications : Extraction flow Transit time @ low current t0I, t0P, TBVL, DT0H CBE, CBCi, CBCx, CCS Critical current parameters RCI0U, dC,VCES, VPT, VLIM gC and Collector current source (Jcu, mcf) Transit time @ high current tEF0, GTE, tHCS, ALHC base-emitter & base-collector current source RE is extracted / RCX, RBX, RBI are calculated from layer resistivity DC charge @ high current IQFHu, tFH HICUM WORKSHOP 2004

  11. Applications : Extraction of Capacitance • CBE=CBEpuPE0+CBEsuAE0 HICUM WORKSHOP 2004

  12. Collector current versus emitter width for different VBE and VBC=0 V (measurement) r0 WE0 LE0 gC Mask E B C Applications : Extraction of gC • IC=JC(WE0+2gC)(LE0+2gC) • IC=0 if WE0=-2gC HICUM WORKSHOP 2004

  13. Applications: Extraction of Transit time • Split into one internal part and into one peripheral part: • Ic=Ii+Ip= JiAE0+JpPE • Qtotal= Q0i+ Q0P • Internal charge: Q0i=t0iIi • Peripheral charge: Q0P=t0PIP • Equivalent transit time - t0=Qtotal/Ic • Scalable model [1] : • Extracted t0 values versus emitter area for different emitter sizes. (1: 0.25*1.45 µm², 2: 0.25*3.05 µm², 3: 0.25*6.25 µm², 4: 0.25*12.65 µm², 5: 0.25*25.45 µm², 6: 0.65*12.65 µm², 7: 1.45*12.65 µm²) HICUM WORKSHOP 2004 [1] Michael Schröeter et al. IEEE solid states circuits, vol .31, n°10, oct 1996

  14. Applications :Extraction of Critical current parameter • Critical current • Models the transit frequency fall- off • Link to Kirk effect • Collector doping • Internal collector resistance: • Current spreading in the collector with a dC angle • Scalable model [1] fcs Extracted RCI0 values versus emitter area for different emitter sizes. (1: 0.25*1.45 µm², 2: 0.25*3.05 µm², 3: 0.25*6.25 µm², 4: 0.25*12.65 µm², 5: 0.25*25.45 µm², 6: 0.65*12.65 µm², 7: 1.45*12.65 µm²) with HICUM WORKSHOP 2004 [1] Michael Schröeter et al. IEEE solid states circuits, vol .31, n°10, oct 1996

  15. Applications : Impact of vias on the emitter resistance • Number of vias and emitter width is not proportional: • Simple model doesn’t work ( ) • Number of vias has to be calculated versus the width with layout rules: • WE0 = 0.25 µm Nb_via = 1 • WE0 = 0.65 µm Nb_via = 1 • WE0 = 1.45 µm Nb_via = 2 Gummel plot@ VBC =0 V for 3emitter sizes (0.25, 0.65, 1.45*12.65 µm²) (model 1: taking into account via; model 2: without via) HICUM WORKSHOP 2004

  16. Applications :Impact of Corner rounding r gC gC r WE0 LE0 Emitter sizes 1: 0.25*0.65 µm², 2: 0.25*1.45 µm², 3: 0.25*3.05 µm², 4: 0.25*6.25 µm², 5: 0.25*12.65 µm², 6: 0.25*25.45 µm² With r0 (maximum value) =WE0/2 [2] HICUM WORKSHOP 2004 [2] Michael Schröeter et al. IEEE solid states circuits, vol .34, n°8, oct 1999

  17. y r S 0 r-wE/2 LE r WE Applications :Impact of Corner rounding • Model is not physical • But usefull for low size Emitter sizes 1: 0.25*0.65 µm², 2: 0.25*1.45 µm², 3: 0.25*3.05 µm², 4: 0.25*6.25 µm², 5: 0.25*12.65 µm², 6: 0.25*25.45 µm² S1 HICUM WORKSHOP 2004

  18. 0.25*25.45 µm² 0.65*12.65 µm² 0.25*0.65 µm² Applications : DC measurement and model comparisonBiCMOS 0.25 µm from STMicroelectronics HICUM WORKSHOP 2004

  19. Applications : AC measurement and model comparisonBiCMOS 0.25 µm from STMicroelectronics HICUM WORKSHOP 2004

  20. Applications : AC measurement and model comparisonY parameters :Y=f(frequency,VCE=1.5 V) for 4 VBE (0.7 V, 0.8V, 0.9V, 1V)emitter size (0.25 * 12.65 µm²)BiCMOS 0.25 µm from STMicroelectronics HICUM WORKSHOP 2004

  21. Applications : AC measurement and model comparisonY parameters :Y=f(frequency,VCE=1.5 V) for 4 VBE (0.7 V, 0.8V, 0.9V, 1V)emitter size (0.25 * 12.65 µm²)BiCMOS 0.25 µm from STMicroelectronics HICUM WORKSHOP 2004

  22. Applications : AC measurement and model comparisonY parameters :Y=f(IC,VBC=0) for 3 widths (0.25 * 12.65 µm²,0.65 * 12.65 µm²,1.45 * 12.65 µm²) and @ 7 GHzBiCMOS 0.25 µm from STMicroelectronics HICUM WORKSHOP 2004

  23. Applications : AC measurement and model comparisonY parameters :Y=f(IC,VBC=0) for 3 widths (0.25 * 12.65 µm²,0.65 * 12.65 µm²,1.45 * 12.65 µm²) and @ 7 GHzBiCMOS 0.25 µm from STMicroelectronics HICUM WORKSHOP 2004

  24. Conclusion • L0 can be enhanced (substrate network & Parasistic transistor) • L0 has the Simplicity of Gummel Poon: • Less computational effort • Extraction is easier • Electrical description is very good • Charge description • But L2 is more precise for electrical description • But L2 has convergence problems for : • Transient simulation with pulse for high slew rate • Geometry Scaling with L0 can be realized • This scalable model was used on a BiCMOS 0.25 µm STMicroelectronics technology. • DC and AC shows good agreements • For different emitter size: • Width 0.25 µm -> 1.45 µm • Length 1.45 µm -> 25.45 µm HICUM WORKSHOP 2004

  25. Perspectives • Comparison of L0 model with measurement from • Very low size transistor • Faster transistor • Enhancing model accuracy for specific physical effects (ex: High injection Barrier effects) • SOI modelling HICUM WORKSHOP 2004

More Related