1 / 9

Pertemuan 9 Slope Deflection Method

Pertemuan 9 Slope Deflection Method. Matakuliah : S0114 / Rekayasa Struktur Tahun : 2006 Versi : 1. Learning Outcomes. Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa dapat menghitung struktur dengan metode slope deflection method. Outline Materi.

turi
Download Presentation

Pertemuan 9 Slope Deflection Method

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pertemuan 9Slope Deflection Method Matakuliah : S0114 / Rekayasa Struktur Tahun : 2006 Versi : 1

  2. Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Mahasiswa dapat menghitung struktur dengan metode slope deflection method

  3. Outline Materi • Materi 1 : Penurunan Rumus Slope Deflection method

  4. P1 P2 A B C D E P1 P2 B A C D E Rumus Slope Deflection Method A = 0 D = 0 E = 0 Hanya ada B Free body :

  5. Moment Titik Momen batang Perjanjian tanda: Momen batang Momen titik + + - - Free body dengan anggapan momennya positip Moment Titik

  6. B MBA MBC MCB C MCE Dari free body kita tinjau titik B: MBD Syarat kesetimbangan MB=0 MBA + MBC + MBD = 0 ……….(1) Dari free body kita tinjau titik C : Dari kedua persamaan ini soal dapat diselesaikan Syarat kesetimbangan MC = 0 MCB + MCE = 0 ……….(2)

  7. MB’ A A B B MA’  P1 P2 B MAB A B A MBA l FEMBA FEMAB P1 P2 A B l Hubungan antara perputaran  dengan M  adalah positip bila searah jarum jam = + + A1 B1 A2 B2

  8. B1 A1 MA’ L MB’ B2 A2 MAB, MBA, A, B diambil tanda positip FEMAB, FEMBA diambil positip A = - A1 + A2 B = B1 - B2 A1 = M’A l/3EI B1 = MA’ l/6EI A2 = M’B l/6EI B2 = MB’ l/3EI A= -M’A.l/3EI + M’B.l/6EI x-2 -2A= 4M’A.l/3EI - 2M’B.l/6EI B= MA’.l/6EI - M’B.l/6EI B= MA’.l/6EI - M’B.l/6EI -2A- B= 3MA’.l/6EI MA’ = 2EI/l( -2 A- B) MB’ = 2EI/l( -2 B- A)

  9. MAB = FEMAB + 2EI/l ( -2 A - B) MBA = FEMBA + 2EI/l ( -2 B - A) FEMAB = momen primer dititik A dari batang AB FEMBA = momen primer dititik B dari batang AB Dapat disederhanakan menjadi: MAB = FEMAB + Kr AB ( -2 A - B) MBA = FEMBA + Kr BA ( -2 B - A)

More Related