1 / 9

ITRS2003 k eff Roadmap Revision

4.5. Calculated based on delay time using typical critical path. 4.0. Estimated by typical low- k materials and ILD structures. k =3.0-3.3. Described in roadmap table at ITRS2002. 3.5. k =2.6-3.0. Effective Dielectric Constant; k eff. 3.0. k =2.4-2.8. 2.5. k =2.0-2.4. 2.0.

twila
Download Presentation

ITRS2003 k eff Roadmap Revision

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4.5 Calculated based on delay time using typical critical path 4.0 Estimated by typical low-k materials and ILD structures k=3.0-3.3 Described in roadmap table at ITRS2002 3.5 k=2.6-3.0 Effective Dielectric Constant; keff 3.0 k=2.4-2.8 2.5 k=2.0-2.4 2.0 Solutions exist or being optimized Solutions are known Red Brick Wall (Solutions are NOT known) k<1.7 1.5 14 02 03 04 05 06 07 08 09 10 11 12 13 Year of 1st Shipment (=ES) ITRS2003 keff Roadmap Revision

  2. wire wire repeater Critical Path in High-end SoC and RC-scaling Scenario <long IM> <long GM> <short IM> GM with reverse scaled width and thickness wire wire wire wire wire repeater Typical circuits(2NAND+Inv.) connected with average long- intermediate(IM) wires having multiple-stages Global metal(GM) wires with chip-size length divided by optimized repeaters IM wires with module-size length divided by optimized repeaters tmin(1/fmax) µ RTCW+RWCT+2ÖRWCWRTCT Scaling of both RW and CW should be steadily done in order to improve speed (t min) by 30% per generation.

  3. Assumption on Interconnect Parameter Estimation Model <Assumption on Interconnect parameter estimation> Design rule x0.70/node-scaling, Reverse-scaling for GM Chip-size const.(=7mm sq.) as 1-clock cycle limit Module-size x 0.70/node-scaling Repeater Inserted for long IM and GM wires Gate density x 2.0/node(based on ITRS2002 MPU-R.M) Active power density x 0.6/node with average-long IM wire Logic depth x 0.75/node-scaling t min. x 0.70/node-scaling

  4. Impacts of Varying Assumption on Interconnect Parameter < Impact on interconnect parameter > Chip-size­ RC delay increases, lower keff and r eff are needed Module-size­ RC delay increases, lower keff and r eff are needed Repeater¯ RC delay drastically increases for long IM and GM wire Total wire length (= number of layers) increases RC delay increases, lower keff and r eff are needed Gate density­ Power density­ Lower keff is needed, Jmax/Imax increase Logic depth­ Lower keff and r eff are needed for IM wire

  5. 1 1 1 1 1 1 1 1 1 1 - - - - - 1 7 2 1 6 9 a p a C 1 6 6 l a t o T 1 6 3 1 6 0 B f _ t C a p _ t C a p _ k T r _ I L D _ k V i a _ I L D _ k Sensitivity Analysis of Interconnect Parameters on keff A,C B,C C D Cu Cu Cu D B A: DCL-thickness B: DPL-thickness C: DPL(or DCL)-k D: ILD(Trench)-k E: ILD(Via)-k E A B C E B D A E A B A C Cu D E B D E B C D E M a i n E f f e c t s P l o t ( d a t a m e a n s ) f o r T o t a l C a p a DCL:Dielectric Capping Layer DPL:Dielectric Protection Layer A C D E A C D A B D A B C D C E C D E C D B E B C E • Most sensitive to k of both DPL and DCL • Sensitive to DPL thickness as well as k of ILD (Trench, Via) • Should reduce k and thickness of DPL and DCL as well as k of ILD B C D A D E A D A C E A B E A B C D E A B D E A B C E A B C D E 0 5 1 0

  6. 90 nm Node Solutions (2004) Assumptions Cu Cap height = 50nm Hardmask height = NA Via height = 210nm Trench height = 230nm Minimum L/S = 140nm Assumptions Cu Cap height = 50nm Hardmask height = 50nm Via height = 210nm Trench height = 230nm Minimum L/S = 140nm Assumptions Cu Cap height = 50nm Hardmask height = 50nm Via height = 210nm Trench height = 230nm Minimum L/S = 140nm Assumptions k(Cu Cap) = 5.0 k(Hardmask) = NA k(via) = 3.0 k(trench) = 3.0 keff = 3.30 Assumptions k(Cu Cap) = 5.0 k(Hardmask) = 4.1 k(via) = 2.65 k(trench) = 2.65 keff = 3.14 Assumptions k(Cu Cap) = 5.0 k(Hardmask) = 4.1 k(via) = 3.7 k(trench) = 2.65 keff = 3.63

  7. 65 nm Node Solutions (2007) Assumptions Cu Cap height = 35nm Hardmask height = NA Via height = 150nm Trench height = 170nm Minimum L/S = 100nm Assumptions Cu Cap height = 35nm Hardmask height = 35nm Via height = 150nm Trench height = 170nm Minimum L/S = 100nm Assumptions Cu Cap height = 35nm Hardmask height = 35nm Via height = 150nm Trench height = 170nm Minimum L/S = 100nm Assumptions k(Cu Cap) = 4.0 k(Hardmask) = NA k(via) = 2.8 k(trench) = 2.8 keff = 2.96 Assumptions k(Cu Cap) = 4.0 k(Hardmask) = 3.0 k(via) = 2.65 k(trench) = 2.65 keff = 2.83 Assumptions k(Cu Cap) = 4.0 k(Hardmask) = 3.0 k(via) = 2.5 k(trench) = 2.4 keff = 2.71

  8. 45 nm Node Solutions (2010) Assumptions Cu Cap height = 25nm Hardmask height = NA Via height = 110nm Trench height = 125nm Minimum L/S = 70nm Assumptions Cu Cap height = 25nm Hardmask height = 25nm Via height = 110nm Trench height = 125nm Minimum L/S = 70nm Assumptions Cu Cap height = 25nm Hardmask height = 25nm Via height = 110nm Trench height = 125nm Minimum L/S = 70nm Assumptions k(Cu Cap) = 3.5 k(Hardmask) = NA k(via) = 2.4 k(trench) = 2.4 kkeff = 2.54 Assumptions k(Cu Cap) = 3.5 k(Hardmask) = 2.5 k(via) = 2.2 k(trench) = 2.2 keff = 2.40 Assumptions k(Cu Cap) = 3.5 k(Hardmask) = 2.5 k(via) = 2.2 k(trench) = 2.0 keff = 2.31

  9. Cu Resistivity Increase by Electron-scattering Effect Wire width < mean free path of electrons ¯ Surface scattering dominant p=0 (complete diffuse scattering) p=1 (specular scattering) ¯ Resistivity increases even if Barrier metal is set to zero ¯ BM/Cu interface roughness reduction might be a solution 5 Measured Cu resistivity without BM p=0 4 3 Resistivity(mWcm) p: fraction of electrons having elastic collisions at wire surfaces 2 p=0.5 1 0 0 0.1 0.2 0.3 0.4 0.5 Line width(nm) Red collar legend (Red brick wall) beyond 32nm node (IM pitch=95nm)

More Related