1 / 67

INDEKS KELESTARIAN LINGKUNGAN = Environmental Sustainability Index

Diabstraksikan oleh : soemarno , psdl ppsub , desember 2012. INDEKS KELESTARIAN LINGKUNGAN = Environmental Sustainability Index. BIODIVERSITAS. Bahan Kajian pada MK. PSDAL . BIODIVERSITY = KEANEKA RAGAMAN HAYATI.

twyla
Download Presentation

INDEKS KELESTARIAN LINGKUNGAN = Environmental Sustainability Index

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diabstraksikanoleh: soemarno, psdlppsub, desember 2012 INDEKS KELESTARIAN LINGKUNGAN =Environmental Sustainability Index BIODIVERSITAS BahanKajianpada MK. PSDAL

  2. BIODIVERSITY = KEANEKA RAGAMAN HAYATI Keragamanhayati (biodiversity ataubiological diversity) merupakanistilah yang digunakanuntukmenggambarkankekayaanberbagaibentukkehidupandibumiinimulaidariorganismeberseltunggalsampaiorganismetingkattinggi. Keragamanhayatimencakupkeragaman habitat, keragamanspesies (jenis) dankeragamangenetik (variasisifatdalamspesies) KeanekaragamanHayatiadalahtingkatvariasibentukkehidupandalamsuatuekosistemtertentu, bioma, atauseluruh planet. KeanekaragamanHayatiadalahukurandarikesehatanekosistem. KeanekaragamanHayatiadalahsebagianfungsidariiklim. Pada habitat darat, daerahtropisbiasanyakayasedangkandaerah-daerahkutubdukunganspesies yang lebihsedikit. Perubahanlingkungan yang cepatbiasanyamenyebabkankepunahanmassa. Salahsatuperkiraanadalahbahwakurangdari 1% darispesies yang telahadadiBumi yang masihada. KeanekaragamanHayatiadalahkeseluruhanvariasiberupabentuk, penampilan, jumlah, dansifat yang dapatditemukanpadamakhlukhidup.Keanekaragamanhayatimerupakanlahanpenelitiandanpengembanganilmu yang sangatbergunauntukkehidupanmanusia. Diunduhdari: http://woentari-monica.blogspot.com/2012/05/pengertian-keanekaragaman-hayati-dari.html……………… 4/12/2012

  3. KEANEKARAGAMAN HAYATI Keanekaragamanhayatimenekankanpadasemuajenisspesiestumbuhan, hewandanmikroorganismejugadenganekosistimnyadimanamerekamerupakanbagian yang takterpisahkan, termasukjumlahdanfrekuensiekosistem, spesiesdan gen yang salingberkaitan. Adatigamacamkeanekaragamanhayati, yaitu : a. Keanekaragamanspesies(Species Diversity) b. Keanekaragamanekosistem(Ecosystem Diversity) c. Keanekaragamangenetika(Genetic Diversity) Diunduhdari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012

  4. Keanekaragamanspesies / jenis(Species Diversity) Keanekaragamanspesiesterbentukolehadanyakesesuaiankandungangenetika yang mengatursifatdarikebakaandenganlingkunganterhadapanggotajenis yang sama yang dalamhalinimemilikikerangkadasar, komponengenetikakhususnyakromosom yang sama. Species Richness Index: Simpson’s Index Simpson gave the probability of any two individuals drawn at random from an infinitely large community belonging to different species. The Simpson index is therefore expressed as 1-D or 1/D. Simpson’s index is heavily weighed towards the most abundant species in the sample while being less sensitive to species richness. It has been shown that once the number of species exceeds 10 the underlying species abundance distribution is important in determining whether the index has a high or low value. The D value which is standing for the dominance index is used in pollution monitoring studies. As D increases, diversity decreases. (diunduhdari: http://webcache.googleusercontent.com/search?q=cache:CN372gBQkCwJ:ocw.unu.edu/) Diunduhdari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012

  5. Species Diversity Indices: Shannon-Wiener Index Shannon and Wiener independently derived the function which has become known as Shannon index of diversity. This indeed assumes that individuals are randomly sampled from an independently large population. The index also assumes that all the species are represented in the sample. Log2 is often used for calculating this diversity index but any log base may be used. It is of course essential to be consistent in the choice of log base when comparing diversity between samples or estimating evenness. The value of Shannon diversity is usually found to fall between 1.5 and 3.5 and only rarely it surpasses 4.5. It has been reported that under log normal distribution, 105 specieswillbe needed to produce a value of Shannon diversity more than 5. Expected Shannon diversity is also used (Exp H’) as an alternative to H’. Exp H’ is equivalent to the number of equally common species required to produce the value of H’ given by the sample. The observed diversity (H’) is always compared with maximum Shannon diversity (Hmax) which could possibly occur in a situation where all species were equally Abundant. Diunduhdari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012 Species Diversity Indices Shannon-Wiener Index Shannon and Wiener independently derived the function which has become known as Shannon index of diversity. This indeed assumes that individuals are randomly sampled from an independently large population. The index also assumes that all the species are represented in the sample. Log2 is often used for calculating this diversity index but any log base may be used. It is of course essential to be consistent in the choice of log base when comparing diversity between samples or estimating evenness. The value of Shannon diversity is usually found to fall between 1.5 and 3.5 and only rarely it surpasses 4.5. It has been reported that under log normal distribution, 105 specieswillbe needed to produce a value of Shannon diversity more than 5. Expected Shannon diversity is also used (Exp H’) as an alternative to H’. Exp H’ is equivalent to the number of equally common species required to produce the value of H’ given by the sample. The observed diversity (H’) is always compared with maximum Shannon diversity (Hmax) which could possibly occur in a situation where all species were equally abundan

  6. Keanekaragamanekosistem(Ecosystem Diversity) Merupakansuatukesatuanlingkungan yang melibatkanunsur-unsurbiotik, faktorfisik (iklim, tanahdan air) danfaktorkimia (keasaman) yang salingberinteraksi. Beberapatipe (kelompok) keanekaragamanekosistemantara lain : Ekosistembahari: Terdiridariekosistemlautdanekosistempantai Ekosistemdarat”: Terdiridarivegetasidataranrendah, vegetasipegunungandanvegetasimunson. An ecosystem is a community plus the physical environment that it occupies at a given time. An ecosystem can exist at any scale, for example, from the size of a small tide pool up to the size of the entire biosphere. However, lakes, marshes, and forest stands represent more typical examples of the areas that are compared in discussions of ecosystem diversity. The diversity of an ecosystem is dependent on the physical characteristics of the environment, the diversity of species present, and the interactions that the species have with each other and with the environment. Therefore, the functional complexity of an ecosystem can be expected to increase with the number and taxonomic diversity of the species present, and the vertical and horizontal complexity of the physical environment. (Sumber: http://cnx.org/content/m12156/latest/#roth) Diunduhdari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012

  7. KEANEKARAGAMAN GENETIKA (GENETIC DIVERSITY) Setiapkerangkadasarkomponengenetikatersusunribuanfaktorkebakaanketurunan. Satufaktorpengaturkebakaandisebut gen, suatulingkungan yang memuattumbuhan yang liar/sudahdidomestikasi. Keanekaragamangenetik(genetic diversity) adalahsuatutingkatanbiodiversitas yang merujukpadajumlah total variasigenetikdalamkeseluruhanspesies yang mendiamisebagianatauseluruhpermukaanbumi yang dapatdidiami. Iaberbedadarivariabilitasgenetik, yang menjelaskankecenderungankemampuansuatukarakter/sifatuntukbervariasi yang dikendalikansecaragenetik. Pengukurankeanekaragamangenetik Keanekaragamangenetikasuatupopulasidapatdiperkirakandenganmenggunakanbeberapapengukuransederhana. Keanekaragaman gen, adalahproporsilokuspolimorfikdiseluruhgenom. Heterozigositas, adalahjumlah rata-rata individudenganlokuspolimorfik. Alel per lokus, jugadigunakanuntukmendemonstrasikanvariabilitas. (sumber: http://id.wikipedia.org/wiki/Keanekaragaman_genetik) Diunduhdari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012

  8. Biodiversity Variety of living things, number of kinds Ecological diversity different habitats, niches, species interactions Species diversity different kinds of organisms, relationships among species Genetic diversity different genes & combinations of genes within populations Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  9. ManfaatBiodiversitas • Fungsiekosistem • Jasa-jasaEkosistem • Membersihkan air, • Cleaning air, • Habitat & breeding areas for wildlife, … • Manfaatestetikadanbudaya Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  10. Sumberdaya Alam • Vital economic natural resources • Renewable • Forests (plants, wildlife) • Soils • Fresh water (lakes, rivers) • Wildlife and fisheries • Rangeland • Nonrenewable • Minerals • Fossil Fuels Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  11. SumberdayaAlam • Management of natural resources • Assure availability of resources for the future • Three “philosophies” • Maximum sustained yield • Ecosystem-based management • Adaptive management Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  12. ManfaatBiodiversitas • New food sources • Grains, fruits, vegetables, meat, fish Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  13. ManfaatBiodiversitas Pengobatan: • Plants • Jellyfish & sea anemones • Nudibranchs • Marine slugs Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  14. Biodiversitas Berapabesarbiodiversitas • 1.7—2.0 million species • Estimates to 100 million Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  15. Biodiversitas Dimanabiodiversitas? • Everywhere • Every continent and habitat has unique life forms • Concentrated in the tropics • Panama: > 500 species of breeding birds • Arctic: 50-100 species • Dense concentrations Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  16. AncamanBiodiversitas Kepunahan & ReduksiPopulasi • Perburuan & Panenberlebihan • Tiger • Dodo • Whales • Sharks • Kehilangan Habitat Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  17. AncamanBiodiversitas • Extinction and population reductions • Pollution • Climate change • Invasive species Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  18. ProteksiBiodiversitas • How can we protect biodiversity • Stop overharvesting • Sustainable yield • Hunting & fishing laws (every state ?) • in developing nations ? • Protect habitat • Refuges, parks, preserves • Endangered Species Act Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  19. ProteksiBiodiversitas • Refuges, parks, preserves • How big should refuges be? • Where should they be? • McArthur & Wilson “Theory of Island Biogeography” • colonization rate • extinction rate (local) • predicts number of species Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  20. ProteksiBiodiversitas • Effect of island size • Effect of island distance Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  21. ProteksiBiodiversitas McArthur & Wilson: “TeoriBiogeografiPulau” • LajuKolonisasi • LajuKepunahan (lokal) • predicts number of species Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  22. ProteksiBiodiversitas BiogeografiPulau: UkuranPulaumemprediksijumlahspesies Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  23. ProteksiBiodiversitas BiogeografiPulau • Everyplace is an island • Fragmentasi Habitat • Smaller fragments hold fewer species Diunduhdari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt‎

  24. BIODIVERSITAS EKOSISTEM ECOSYSTEM BIODIVERSITY implies the existence of different species within an ecosystem. It can also be defined as the degree of variations among the life forms in an ecosystem or planet. ECOSYSTEM DIVERSITY is the variety of different natural systems or ecosystems in a particular area. Examples of ecosystem diversity are deserts, forests, wetlands, rain-forests, marine ecosystems etc. Diunduhdari: http://www.environmentabout.com/820/ecosystem-biodiversity-and-types-of-biodiversity ……………… 4/12/2012

  25. What is biodiversity? • OED: “biodiversityEcol., diversity of plant and animal life, as represented by the number of extant species” • Ricklefs & Miller: Biodiversity includes a number of different levels of variation in the natural world: genetic, species, ecosystem • Begonet al. “The term may be used to describe the number of species, the amount of genetic variation or the number of community types present in an area”. Tetapi .......… sebagianterbesarpenelitianfokuspadadiversitasspesies Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  26. ApakahBiodiversitasmempengaruhifungsi-fungsiekosistem ? Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  27. KonsekwensifungsionaldariBiodiversitas: Numbers and Kinds of Species Organismal traits Ecosystem Processes Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  28. Traits & FungsiEkosistem • Traits may mediate energy and material flow directly • Traits may alter abiotic conditions (limiting resources, disturbance, microclimate) Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  29. Ekspresi Trait ditentukanoleh: • Species richness • Species evenness • Species composition • Species interaction • Temporal and spatial variation Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  30. Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  31. The Ecosystem/Ecology Divide • Key ecosystem types in Arctic tundra show clear differences in key species and functional types • But at the ecosystem level there are clear patterns in the landscape irrespective of species composition • Bulk measures like LAI and foliar N are good descriptors of process rates • Dengandemikian, Apakah species sangatpenting? Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  32. Kekayaan Species & FungsiEkosistem : Theory • If niches are complementary, adding species could increase process rates linearly • As niches overlap the response should saturate Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  33. Niche differentiation and productivity. a. A simple model — the 'snowballs on the barn' model — of niche differentiation and coexistence. The range of conditions in which each species can exist is shown with a circle, the position of which is defined by its centre. By randomly choosing locations for various numbers of circles (species), it is possible to calculate the effect of diversity on the 'coverage' of the heterogeneous habitat. The amount of such coverage is proportional to community biomass. b. Results of simulations (triangles) and of an analytical solution (solid curve) to the effects of diversity on community productivity for the snowballs on the barn model From: Tilman (2000), Nature. Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  34. Dependence of 1996 aboveground plant biomass (that is, productivity) (mean and SE) on the number of plant speciesseeded into the 289 plots. • Dependence of 1996 above-ground plant biomass on the number of functional groups seeded into eachplot. Curves shown are simple asymptotic functions fitted to treatmentmeans. More complex curves did not provide significantly betterfits • From: Tilman et al. (1997) Science Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  35. Hypothesized mechanisms involved in biodiversity experiments using synthetic communities. Sampling effects are involved in community assembly, such that communities that have more species have a greater probability of containing a higher phenotypic trait diversity. Phenotypic diversity then maps onto ecosystem processes through two main mechanisms: dominance of species with particular traits, and complementarity among species with different traits. Intermediate scenarios involve complementarity among particular species or functional groups or, equivalently, dominance of particular subsets of complementary species. From: Loreau et al (2001) Science Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  36. Kemerataan Species • Human effects on species more commonly involve alteration of relative abundance than extinction • Little research on importance of evenness of function so far • Future richness experiments should include evenness effects Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  37. Komposisi Species • Species mediate pathways of energy and material flow • Examples: Introduced species can alter patterns of ecosystem processes Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  38. Species introduksidapatmengubahpolaproses-prosesekosistem • Introduction of N-fixing tree Myricafaya to N-limited Hawaiian forests led to 5-fold increase in N inputs • Dampaksignifikanterhadapstrukturdanfungsihutan Vitouseket al. (1987) Science Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  39. Species introduksidapatmengubahpolaproses-prosesekosistem • Introduction of deep-rooted salt cedar (Tamarix sp.) to Mojave and Sonaran deserts resulted in: • Increased water accessed by vegetation • Increased surface litter and salts • Inhibited many native species, reduced biodiversity Berry (1970) Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  40. Species introduksidapatmengubahpolaproses-prosesekosistem • Introduction of Agropyroncristatum, tussock grass, to US Great Plains • Reduced allocation to roots compared to native grasses • Soil N levels reduced, and 25% less total soil C compared to native prairie soil Christian & Wilson (1999) Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  41. Species introduksidapatmengubahpolaproses-prosesekosistem • Introduction of Bromustectorum, cheatgrass, to western US • Fire frequency increased by a factor of 10 in the >40 million ha it now dominates Whisenant (1990) Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  42. Interaksi Species • Mutualism • Trophic interaction • Predation • Parasitism • Herbivory • Competition Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  43. Mutualism • N-fixation in plant-microbe symbiosis • Plant-mycorrhizal associations • Both increase production and accelerate succession • Decomposition is driven by highly integrated consortia of microbes Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  44. STUDI KASUS Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  45. Experiment 2 van derHeijden 1998 Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  46. Komunitasmikroba: Semakinberagamsemakinefisien Soil microbial functional diversity (Shannon index H') and metabolic quotient (qCO2 = soil basal respiration/soil microbial biomass) correlate inversely. A higher diversity in the organic plots is related to a lower qCO2, indicating greater energy efficiency of the more diverse microbial community. The Shannon index is significantly different between both conventional systems (CONFYM, CONMIN) and the BIODYN system, the qCO2, between CONMIN and BIODYN (P < 0.05). Maeder 2002 Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  47. InteraksiTrophik • Modify fluxes of energy and materials • Influence abundance of species that control these fluxes • e.g., predator removal can lead to a cascade of ecological effects Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  48. (A) Changes in sea otter abundance over time at several islands in the Aleutian archipelago and concurrent changes in (B) sea urchin biomass, (C) grazing intensity, and (D) kelp density measured from kelp forests at Adak Island. Error bars in (B) and (C) indicate 1 SE. The proposed mechanisms of change are portrayed in the marginal cartoons--the one on the left shows how the kelp forest ecosystem was organized before the sea otter's decline and the one on the right shows how this ecosystem changed with the addition of killer whales as an apex predator. Heavy arrows represent strong trophic interactions; light arrows represent weak interactions. Estes et al. (1998) Science Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  49. InteraksiTrophik • All types of organisms must be considered in understanding biodiversity effects • Interactions among species must be considered • Changes in interactions can alter traits expressed by species, so presence/absence of species is insufficient to predict impact Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

  50. Biodiversity & Jasa Ecosystem • Ecosystem services are defined as the processes and conditions of natural ecosystems that support human activity and sustain human life • E.g., maintenance of soil fertility, climate regulation, natural pest control • E.g., flows of ecosystem goods such as food, timber and freshwater Diunduhdari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt‎

More Related