1 / 28

tens of MeV

MICROSCOPIC CALCULATIONS OF ISOSPIN IMPURITIES AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS USING ISOSPIN AND ANGULAR-MOMENTUM PROJECTD DFT. Wojciech Satuła. in collaboration with J. Dobaczewski , W. Nazarewicz & M. Rafalski.

tyanne
Download Presentation

tens of MeV

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MICROSCOPIC CALCULATIONS OF ISOSPIN IMPURITIES AND ISOSPIN-SYMMETRY-BREAKINGCORRECTIONS USING ISOSPIN AND ANGULAR-MOMENTUM PROJECTD DFT WojciechSatuła incollaborationwith J. Dobaczewski, W. Nazarewicz & M. Rafalski Intro: effectivelow-energytheory for medium mass and heavy nuclei mean-field(ornuclear DFT)  beyondmean-field (projection) Symmetry (isospin) violation and restoration: • unphysicalsymmetryviolation  isospinprojection • Coulomb rediagonalization(explicitsymmetryviolation) isospinimpuritiesinground-states of e-e nuclei structuraleffects SD bandsin56Ni superallowed beta decay symmetry energy – newopportunities of study Summary ab initio + NNN + .... tens of MeV

  2. Effectivetheories for low-energy(low-resolution) nuclearphysics (I): Low-resolution separation of scaleswhichis a cornerstone of alleffectivetheories

  3. Thenucleareffectivetheory There exist an „infinite” number of equivalent realizations of effective theories is based on a simple and very intuitive assumption that low-energy nuclear theory is independent on high-energy dynamics ultraviolet cut-off Fourier regularization Coulomb Long-range part of the NN interaction (must be treated exactly!!!) hierarchy of scales: 2roA1/3 2A1/3 ~ local correcting potential ro ~ 10 denotes an arbitrary Dirac-delta model where przykład Gogny interaction

  4. Skyrme interaction - specific (local) realization of the nuclear effective interaction: lim da a 0 spin exchange relative momenta LO NLO 10(11) SV density dependence parameters spin-orbit Skyrme-force-inspiredlocal energy densityfunctional Y | v(1,2) | Y Slater determinant (s.p. HF states are equivalent to the Kohn-Sham states) local energy density functional

  5. Symmetry-conserving configuration Total energy (a.u.) Symmetry-breaking configurations Elongation (q) Skyrme (nuclear) interactionconservessuchsymmetrieslike:  rotational (spherical) symmetry  isospinsymmetry: Vnn= Vpp= Vnp(in reality approximate)  parity… LS LS LS Mean-fieldsolutions (Slaterdeterminants) break (spontaneously) thesesymmetries

  6. Restoration of brokensymmetry Euler angles gauge angle Beyond mean-fieldmulti-referencedensityfunctionaltheory rotated Slater determinants are equivalent solutions where

  7. Applytheisospinprojector: in order to creategoodisospin „basis”: BR BR aC= 1 - |bT=|Tz||2 Isospinsymmetryrestoration • Therearetwosources of theisospinsymmetrybreaking: • unphysical, causedsolely by the HF approximation • physical, caused mostly by Coulomb interaction • (also, but to much lesserextent, by the strong force isospin non-invariance) Engelbrecht & Lemmer, PRL24, (1970) 607 Findself-consistent HF solution (including Coulomb)  deformed Slater determinant |HF>: See: Caurier, Poves & Zucker, PL 96B, (1980) 11; 15 Calculatetheprojected energy and the Coulomb mixing BeforeRediagonalization:

  8. n=1 AR aC= 1 - |aT=Tz|2 Diagonalizetotal Hamiltonian in „goodisospinbasis” |a,T,Tz>  takesphysicalisospinmixing Isospin breaking: isoscalar, isovector & isotensor Isospin invariant

  9. eMF = 0 eMF = e Ca isotopes: 0.4 BR SLy4 AR 0.2 0 aC [%] 1 1.0 0.1 0.8 0.01 0.6 60 40 44 48 52 56 0.4 0.2 0 56 40 48 44 52 60 Mass number A Numericalresults: • Isospinimpuritiesingroundstates of e-e nuclei W.Satuła, J.Dobaczewski, W.Nazarewicz, M.Rafalski, PRL103 (2009) 012502 Herethe HF issolved without Coulomb |HF;eMF=0>. Herethe HF issolved with Coulomb |HF;eMF=e>. In bothcasesrediagonalization isperformed for thetotal Hamiltonian including Coulomb

  10. DaC ~30% SLy4 BR AR aC [%] 6 N=Z nuclei 5 4 3 1.0 2 0.8 1 E-EHF [MeV] 0.6 0 0.4 0.2 0 20 28 36 44 52 60 68 76 84 92 100 A (II) Isospinmixing & energy inthegroundstates of e-e N=Znuclei: HF tries to reduce the isospin mixing by: AR in order to minimize the total energy BR Projectionincreasesthe ground state energy (the Coulomb and symmetry energiesarerepulsive) BR Rediagonalization (GCM) AR lowerstheground state energy but onlyslightly belowthe HF This is not a single Slater determinat There are no constraints on mixing coefficients

  11. Position of the T=1 doorway state in N=Z nuclei SIII SLy4 SkP 100Sn 35 7 30 aC [%] SkP 6 SLy5 SkP SLy MSk1 SkM* SLy4 5 SIII SkXc SkO’ 25 4 SkO DE ~ 2hw ~ 82/A1/3 MeV 20 y = 24.193 – 0.54926x R= 0.91273 doorway state energy [MeV] 31.5 32.0 32.5 33.0 33.5 34.0 34.5 20 40 60 80 100 Bohr, Damgard & Mottelson hydrodynamical estimate DE ~ 169/A1/3 MeV mean values E(T=1)-EHF [MeV] Sliv & Khartionov PL16 (1965) 176 Dl=0, Dnr=1  DN=2 based on perturbation theory A

  12. Nilsson f5/2 p3/2 [321]1/2 [303]7/2 f7/2 protons neutrons 2 g9/2 pp-h f5/2 p3/2 f7/2 protons neutrons two isospin asymmetric degenerate solutions 1 Isospin symmetry violation in superdeformed bands in 56Ni 4p-4h space-spin symmetric D. Rudolph et al. PRL82, 3763 (1999)

  13. T=1 nph dET centroid pph band 2 dET T=0 Isospin-projection 20 16 8 6 56Ni 4 12 2 Exp. band 1 Exp. band 2 Th. band 1 Th. band 2 8 5 10 15 4 Isospin projection Mean-field aC [%] band 1 Hartree-Fock Excitation energy [MeV] 5 10 15 Angular momentum Angular momentum W.Satuła, J.Dobaczewski, W.Nazarewicz, M.Rafalski, PRC81 (2010) 054310

  14. Primarymotivation of theproject isospincorrections for superallowed beta decay Tz=-/+1 J=0+,T=1 (N-Z=-/+2) t1/2 t+/- Qb J=0+,T=1 (N-Z=0) BR Tz=0 Experiment: Fermi beta decay: d5/2 8 8 p1/2 p3/2 2 2 f statisticalratefunctionf (Z,Qb) s1/2 n t partialhalf-lifef (t1/2,BR) n p p GVvector (Fermi) couplingconstant 14N 14O <t+/-> Fermi (vector) matrix element Hartree-Fock |<t+/->|2=2(1-dC)

  15. Experimentworld data survey’08 T&H, PRC77, 025501 (2008) 10 casesmeasuredwithaccuracyft ~0.1% 3 casesmeasuredwithaccuracyft ~0.3% nucleus-independent ~1.5% 0.3% - 1.5% ~2.4% Marciano & Sirlin, PRL96 032002 (2006)

  16. Whatcan we learn out of it? From a single transiton we candetermineexperimentally: GV2(1+DR)  GV=const. From many transitions we can:  test of the CVC hypothesis (ConservedVectorCurrent) seeJ.Hardy, ENAM’08 presentation  exoticdecays Test for presence of a ScalarCurrent

  17. Withthe CVC beingverified and knowingGm(muondecay) one candetermine mass eigenstates CKM Cabibbo-Kobayashi-Maskawa weakeigenstates |Vud| =0.97418 + 0.00026  test unitarity of the CKM matrix Towner & Hardy Phys. Rev. C77, 025501 (2008) |Vud|2+|Vus|2+|Vub|2=0.9997(6) 0.9490(4) test of threegenerationquark Standard Model of electroweakinteractions 0.0507(4) <0.0001

  18. Model dependence Hardy &Towner Phys. Rev. C77, 025501 (2008) dC=dC1+dC2 Liang & Giai & Meng Phys. Rev. C79, 064316 (2009) shell model mean field spherical RPA Coulomb exchangetreatedinthe Slaterapproxiamtion radialmismatch of thewavefunctions configuration mixing Miller & Schwenk Phys. Rev. C78 (2008) 035501;C80 (2009) 064319

  19. n n n n p p p p n n n p p p n p n p n n p p T=0 Isobaricsymmetryviolation in o-o N=Znuclei Tz=-/+1 J=0+,T=1 (N-Z=-/+2) t1/2 t+/- Qb J=0+,T=1 (N-Z=0) BR Tz=0 MEAN FIELD CORE CORE anti-aligned configurations aligned configurations n p or or ISOSPIN PROJECTION T=1 T=0 Mean-fieldcandifferentiatebetween ground state isbeyondmean-field! and onlythroughtime-oddpolarizations!

  20. 40 30 20 10 0 1 3 5 7 42Sc – isospinprojection from [K,-K] configurations with K=1/2,…,7/2 -7/2 -5/2 f7/2 -3/2 -1/2 1/2 3/2 5/2 isospin & angularmomentum 7/2 isospin aC [%] 0.586(2)% 2K

  21. 1 0.1 0.01 0.001 r =Syi*Oijjj -1 0.0001 ij 0.0 0.5 1.0 1.5 2.0 2.5 3.0 onlyIP |OVERLAP| IP+AMP p bT [rad] T HF sp state space & isospinrotated sp state inverse of the overlap matrix Singularitiesforceus to useinteraction-drivenfunctional SV

  22. Hartree-Fock antialigned state inN=Z (o-o) nucleus ground state inN-Z=+/-2 (e-e) nucleus CPU Project on goodisospin (T=1) and angularmomentum (I=0) (and perform Coulomb rediagonalization) Project on goodisospin (T=1) and angularmomentum (I=0) (and perform Coulomb rediagonalization) ~ few h ~ fewyears T+/- |I=0,T~1,Tz=0> <T~1,Tz=+/-1,I=0| ~ ~ H&TdC=0.330% 14N L&G&MdC=0.181% 14O our:  dC=0.303% (Skyrme-V; N=12)

  23. H&T: 1.4 Ft=3071.4(8)+0.85(85) Tz= 1 Tz=0 1.2 Vud=0.97418(26) 1.0 our (no A=38): 0.8 Ft=3070.4(9) dC[%] 0.6 Vud=0.97444(23) 0.4 0.2 |Vud|2+|Vus|2+|Vub|2= =1.00031(61) 0 A 10 14 18 22 30 34 42 26 38 2.0 Tz=0 Tz=1 1.5 dC [%] 1.0 0.5 0 A 26 42 50 66 74 34 58

  24. 0.976 0.975 H&T’08 our model 0.974 |Vud| 0.973 Liang et al. n-decay 0.972 superallowedb-decay 0.971 0.970 T=1/2 mirror b-transitions p+-decay

  25. Confidencelevel test based on the CVC hypothesis 2.5 (EXP) T&H PRC82, 065501 (2010) 2.0 Ft dC = 1+dNS - (SV) dC ‚ ft(1+dR) (EXP) dC 1.5 MinimizeRMS deviation between the caluclated and experimentaldC with respect to Ft 1.0 dC [%] 0.5 c2/nd=5.2 for Ft = 3070.0s 75% contribution to the c2comes from A=62 0 Z of daughter 0 5 10 15 20 25 30 35 40

  26. „NEW OPPORTUNITIES” IN STUDIES OF THE SYMMETRY ENERGY: n p a’sym E’sym = a’symT(T+1) In infinitenuclear matter we have: SLy4 SLy4L 1 6 SLy4: SkML* 2 asym=32.0MeV SV 4 SV: a’sym[MeV] asym=32.8MeV SkM*: 2 m asym=30.0MeV m* asym= eF + aint 0 T=1 T=0 SLy4: 14.4MeV SV: 1.4MeV SkM*: 14.4MeV 10 20 30 40 50 A (N=Z)

  27. Summary and outlook Elementaryexcitationsinbinary systems maydiffer fromsimpleparticle-hole (quasi-particle) exciatations especiallywheninteractionamongparticlesposseses additionalsymmetry (like the isospinsymmetry in nuclei) Projectiontechniquesseem to be necessary to account for thoseexcitations - how to constructnon-singularEDFs? [Isospinprojection, unlike the angular-momentum and particle-number projections, ispractically non-singular !!!] Superallowed beta decay:  encomapssesextremelyrichphysics: CVC, Vud, unitarity of the CKM matrix, scalarcurrents… connectingnuclear and particlephysics  … thereisstillsomething to do indc business … How to includepairinginto the scheme?

  28. 0.5 0.0 -0.5 -1.0 -1.5 20 25 30 35 40 45 Mirror-symmetricnuclei (preliminary) Nolen-Schifferanomaly in mirror symmetricnuclei Vpp-Vnn Fig43:110427 DEexp-DEth [MeV] SLy4 (HF) SV (HF) SV (PROJ) A

More Related