170 likes | 301 Views
Neutrino-related nuclear mass difference measurements with a few 10 eV uncertainty at SHIPTRAP. Enrique MINAYA RAMIREZ. Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Neutrino mass. 187 Re. 163 Ho. Q-values of 187 Re ( β - ) & 163 Ho (EC). 2013 ECHo. 1997 F. Gatti et al.
E N D
Neutrino-related nuclear mass difference measurementswith a few 10 eV uncertainty at SHIPTRAP Enrique MINAYA RAMIREZ Max-Planck-Institut für Kernphysik, Heidelberg, Germany
Neutrino mass 187Re 163Ho Q-values of 187Re (β-) & 163Ho (EC) 2013 ECHo 1997 F. Gatti et al. 1993 F. Bosch et al. 1986 S. Yasumi et al. 1994 S. Yasumi et al. 1992 E. Cosulich et al. 1983 P.A. Baisden et al. 1982 J.U. Andersen et al. 1993 K. Ashktorab et al. 1984 E. Laegsgaard et al. 1985 Hartmann & Naumann Experiments ECHo, HOLMES, MARE 1992 Hartmann & Naumann 1967 E. Huster & H. Verbeek 1965 R.L. Brodzinski & D.C. Conway 2000 M. Galeazzi et al. 2003 C. Arnaboldi et al. 1999 A. Alessandrello et al. Direct measurements of Q-values of187Re (β-) and 163Ho (EC) with δQ/m ~ 2·10-10 Required now
Observed T1/2≈ 7∙1018 - 2.5∙1025 yr Not observed, T1/2> 2∙1025 yr Not observed, T1/2> 1024 yr Not observed, T1/2≈1030 yr neutrinoless mode : • ν is a Majorana particle • Conservation of total lepton number breaks • neutrino mass can be determined Neutrino type Double b- decay (bb) • two-neutrino mode (2nbb) • neutrinoless mode (0nbb) Double-electron capture (2EC) • two-neutrino mode (2n 2EC) • neutrinoless mode(0n 2EC)
Search for nuclides with Δ < 1 keV Qεε = M1 – M2 at 100 eV levelPrecision mass measurements for neutrino physics Q-values of neutrinoless double-Electron Capture transitions T1/2(0nbb) <<T1/2(0n2EC) 0ν2EC resonant enhancement of the capture rate(T1/2≈ 1023 yr)
Superconducting magnet (7T) Beam Beam Entrance window Entrance window ion detector Extraction RFQ Extraction RFQ Buncher Quadrupoledeflector DC cage DC cage B RF funnel RF funnel Gas cell Gas cell Diaphragm Purification trap (PT) Measurement trap (MT) m/Δm = 105 Nuclear isobars resolved m/Δm = 107 Isomeric states resolved SHIPTRAP setup Off-line measurements Laser ablation : Ru, Mo, Pd, Ru, Cd, Te, Sn, Ba, Ce, Sm, Nd, Gd, Dy, Er, Y, W, Hf, Re, Os Ion gun : xenon ions (gas)
Resonant enhancement of neutrinolessdouble-electron capture in 152Gd T1/2 (0+→0+)~ 1026 /<mββ>² y S. Eliseev et al., PRL 106, 052504 (2011)
Multiple-resonance phenomena in 156Dy |M|= 3 for 0+ → 0+ T1/2 (0+→0+)~ 31024 /<mββ>² y S. Eliseev et al., PRC 84, 012501R (2011)
position resolution : 70 µm active diameter : 42 mm Delay-Line Detector by Roentdek GmbH y (µm) ToF (µs) ToF (µs) x (µm) Position sensitive detector Phase Imaging Ion Cyclotron Resonance (PI-ICR) ions
Φ R R Phase Imaging Ion Cyclotron Resonance (PI-ICR) Delay-Line Detector by Roentdek GmbH ions Independent Measurements of Eigenfrequencies ν+ and ν- Determination of the spatial distribution Radial excitation Radial excitation followed by a phase accumulation time
S. Eliseev et al., Appl. Phys B 114 (2014) 107 Phase Imaging Ion Cyclotron Resonance (PI-ICR) • Image ion motion • Determine phase of ion motion • Excite ions • Determine phase after evolution time
PI-ICR Ramsey TOF-ICR ΔMshiptrap = M(130Xe+) – M(129Xe+) ΔMFSU - ΔMshiptrap = 690 (880) eV ΔMFSU - ΔMshiptrap = 180 (240) eV S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013) Phase Imaging Ion Cyclotron Resonance (PI-ICR) • Image ion motion • Determine phase of ion motion • Excite ions • Determine phase after evolution time • 40 fold gain in resolving power • 5 fold gain in precision compared to standard technique 25 faster than the Ramsey TOF-ICR
PI-ICR technique at SHIPTRAP ΔM = M(132Xe) - M(131Xe) δ(ΔM)SHIPTRAP = (30stat )( 12sys) eV first ever measurement of mass difference of singly charged medium-heavy non-mass-doublets with a relative accuracy of 2·10-10 !!! ΔMSHIPTRAP - ΔMreference = (8 ± 35) eV
PI-ICR technique at SHIPTRAP 187Re 163Ho Q-values of 187Re (β-) and 163Ho (EC) 2013 ECHo 1997 F. Gatti et al. 1993 F. Bosch et al. 1986 S. Yasumi et al. 1994 S. Yasumi et al. 1992 E. Cosulich et al. 1983 P.A. Baisden et al. 1982 J.U. Andersen et al. 1993 K. Ashktorab et al. 1984 E. Laegsgaard et al. 1985 Hartmann & Naumann 1992 Hartmann & Naumann 1967 E. Huster & H. Verbeek 1965 R.L. Brodzinski & D.C. Conway 2000 M. Galeazzi et al. 2003 C. Arnaboldi et al. 1999 A. Alessandrello et al. SHIPTRAP measurement (April 2014) M(187Re)-M(187Os) = 2492 (30stat) (15sys) eV
PI-ICR technique at SHIPTRAP 187Re 163Ho Q-values of 187Re (β-) and 163Ho (EC) 2013 ECHo 1997 F. Gatti et al. 1993 F. Bosch et al. 1986 S. Yasumi et al. 1994 S. Yasumi et al. 1992 E. Cosulich et al. 1983 P.A. Baisden et al. 1982 J.U. Andersen et al. 1993 K. Ashktorab et al. 1984 E. Laegsgaard et al. 1985 Hartmann & Naumann 1992 Hartmann & Naumann 1967 E. Huster & H. Verbeek 1965 R.L. Brodzinski & D.C. Conway 2000 M. Galeazzi et al. 2003 C. Arnaboldi et al. 1999 A. Alessandrello et al. Preparation of the Measurement of M(163Ho)-M(163Dy)
Measurement of mass difference of singly charged non-mass doublets with a relative accuracy of 2·10-10 with the PI-ICR method Conclusion Search for suitable nuclides (resonant enhancement of 0ν2EC transitions) with SHIPTRAP 2 candidates :152Gd and 156Dy Experiments with 152Gd and 156Dy are feasible Multiple-resonance phenomenon in 156Dy Q-value measurement of 187Re with a few 10 ev accuracy
THE SHIPTRAP COLLABORATION Thank you for your attention (2010) 19/19