1 / 39

Noise and decoherence in a dc SQUID

CNRS-UJF team (Grenoble). CRTBT - LCMI - LP2MC. PhD : J. Claudon A. Fay A. Ratchov. permanent : W. Guichard F.W.J. Hekking L. Lévy O. Buisson. Noise and decoherence in a dc SQUID. | 4 . | 3 . | 2 . | 1 . | 0 . Introduction. dc - SQUID. artificial atom. =. 10 GHz.

tyrone
Download Presentation

Noise and decoherence in a dc SQUID

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CNRS-UJF team (Grenoble) CRTBT - LCMI - LP2MC PhD : J. Claudon A. Fay A. Ratchov permanent : W. Guichard F.W.J. Hekking L. Lévy O. Buisson Noise and decoherencein a dc SQUID

  2. |4 |3 |2 |1 |0 Introduction dc - SQUID artificial atom = 10 GHz Low energy sub-space { |0 , |1 } a phase Qubit (cf. J. Martinis et al.) Higher energy sub-space { |0 , |1 ,|2 , ... } more complex dynamics : eg. multilevel coherent oscillations

  3. S1 S2 The Josephson Junction (JJ) A S-I-S junction CJ model Ib Ib   Ox C0 Ic U() U (Ib) |3 |2  dynamics? mechanical analogy |1 |0 • fictitious particle • mass  C0 • position  • potential U() p(Ib) 

  4. The current biased dc SQUID:a tunable artificial atom Ib DU (Ib,Fb) Ls Fb I0 , C0 I0 , C0 JJ1 p (Ib,Fb) shape of the anharmonic well bias point (Ib,Fb)

  5. The current biased dc SQUID:a tunable artificial atom Ib DU (Ib,Fb) Ls F(t) MW Fb I0 , C0 I0 , C0 n,W1 JJ1 p (Ib,Fb) shape of the anharmonic well bias point (Ib,Fb) MW flux F(t) excitation

  6. Outline • I. Experimental setup • II. Finite lifetime of the ground state • MQT measurement and LF noise • III. Quantum dynamics • Multilevel coherent oscillations • Quantum or classical oscillations? • IV. Incoherent processes in the 2 level limit • Low power spectroscopy • Energy relaxation |2 MQT |1 |0 MW |2 |1 |0 |1 Gr |0

  7. Process • e-beam lithography • Al shadow evaporation Sample realization SiO2 200 m MW antenna bias lines 15 m JJs 15 μm² superconducting loop

  8. Vs MW line dc - 20 GHz heavily filtered bias lines dc - 200 kHz • MW excitation • fast measurement of • the quantum state • SQUID bias(Ib,Fb) • voltage readout Experimental setup (simplified) ~ 25 mK Ze() Loc Ib Fhf Ib 50 Ω Vhf Fb Cp coil

  9. Ib-Vs hysteretic characteristic 3.0 1.5 0 -1.5 -3.0 Vs (mV) -500 -250 0 250 500 Voltage states of a hysteretic dc-SQUID Ic Ib (mA) 0-voltage state resistive state |1 |0

  10. Ib-Vs hysteretic characteristic 3.0 3.0 2.5 1.5 2.0 1.5 0 1.0 -1.5 0.5 -3.0 Vs (mV) -500 -250 0 250 500 0.0 -0.5 0 0.5 Bias point (Ib, b) potential shape Voltage states of a hysteretic dc-SQUID “Phase diagram” Ic Ic Ib (mA) Ib (mA) Fb/F0 0-voltage state resistive state Ic =f(b) SQUID electrical parameters I0 = 1.242 A C0= 560 fF LS = 250 pH  = 0.414 |1 |0

  11. Measurement of : principle Ib T=50 μs TA ~ 4000 repetitions (1 kHz) |1 |0 escape Vs MQT t 1 0.9 Pesc 0.5 0.1 ΔI 0 2.38 2.4 2.42 Ib (µA) Escape of the trapped fictitious particle Dependence on the bias current Ib During ΔT, escape probability : ΔI dominant escape mechanism

  12. 30 20 10 -0.4 -0.2 0 0.2 0.4 20 18 16 14 12 10 -0.5 0 0.5 Escape at low temperature ~ 40 mK F. Balestro’s SQUID MQT for all fluxes fit : no free parameters DI(nA) MQT F. Balestro et al, PRL 2003 Fb/F0 ~ 25 mK This sample small deviation from MQT which scales as DI(nA) flux noise MQT Fb/F0

  13. Noise and escape measurements Noise on bias parameters : or • equivalent effects • difference : flux sensitivity is strongly modulated by • Hypothesis : • adiabatic : frequency • gaussian fluctuations Effect on escape curve : depends on noise frequencies compared to Dt

  14. I (t) b Dt ... ... ... t broadening ~ 0 I b 1 0.5 0 1.7 1.72 1.74 1.76 1.78 Noise and escape measurements Low frequency limit (< 1/Dt) MQT & LF noise Pesc MQT Ib (mA)

  15. I (t) I (t) b b Dt Dt ... ... ... ... t t broadening ~ 0 0 I I 1 b b 1 0.5 0.5 0 0 1.7 1.72 1.74 1.76 1.7 1.72 1.74 1.76 1.78 Noise and escape measurements Low frequency limit (< 1/Dt) High frequency limit (>1/Dt) MQT & LF noise Pesc Pesc MQT & HF noise MQT MQT Ib (mA) Ib (mA) shift ~

  16. 20 MQT & LF flux noise 18 16 DI(nA) 14 12 MQT This sample 5.5×10-4 10 -0.5 0 0.5 F. Balestro’s SQUID < 3×10-4 Fb/F0 Delft flux Qubit (loop area normalization) ~ 2×10-4 Interpretation of escape measurements :low frequency flux noise DI measurements : a probe to LF noise [0.2Hz,20kHz] • no significant LF current noise (fit uncertainty) • yes LF flux noise :

  17. |2 MQT |1 |0 Outline • I. Experimental setup • II. Finite lifetime of the ground state • MQT measurement and LF noise • III. Quantum dynamics • Multilevel coherent oscillations • Comparison to classical oscillations • IV. Incoherent processes in the 2 level limit • Low power spectroscopy • Energy relaxation MW |2 |1 |0 |1 Gr |0

  18. Quantum dynamics:typical sketch of experiments 3 3 3 1 2 2 1 Fb is fixed current Ip(t) Ib t 2 (t) Fm Ic flux Fb Fb+Fm bias point : shape of the potential manipulation : (deep well) adiabatic deformation : selective escape of excited states population of excited states MW initial state =|0 O. Buisson etal, Phys. Rev. Lett. 2003

  19. 1 Vhf (V) n = 5 GHz 0.5 t (ns) 0 0 2 4 6 8 Example of flux sequence Voltage signal(entrance of cryostat) excitation MW pulse measurement pulse risetime = 1 ns duration~ 1 to 300 ns risetime = 1.6 ns duration~ 1.5 ns amplitude : ~10-3F0 amplitude : ~10-2F0

  20. 60 40 20 0 Coherent oscillations Bias point : Ib = 2.222 mA , Fb = -0.117 F0 n01 = 8.287 GHz (low power spectroscopy) E/h (GHz) 7 levels 5 2 1 n01-n12 = 160 MHz n01 0 MW excitation • n = n01 • amplitude : W1 • duration TMW : variable

  21. 0.8 0.6 60 0.4 40 0.2 0.8 20 0.6 0 0.4 0.2 0.8 0.6 0.4 0.2 0 20 40 60 80 Coherent oscillations P = -6 dBm W1/2p = 65 MHz Bias point : Ib = 2.222 mA , Fb = -0.117 F0 ncoh = 66 MHz Pesc n01 = 8.287 GHz (low power spectroscopy) E/h (GHz) 7 levels P = 0 dBm W1/2p = 130 MHz 5 Pesc 2 1 n01-n12 = 160 MHz n01 0 ncoh = 122 MHz MW excitation P = +6 dBm W1/2p = 260 MHz • n = n01 • amplitude : W1 • duration TMW : variable Pesc ncoh = 208 MHz Attenuation time ~ 20 ns Tmw (ns)

  22. 250 200 How many levels? 150 anharmonicity excitation amplitude 100 coherent superposition of excited states 50 |0 0 0 50 100 150 200 250 300 Multilevel coherent oscillations solid line = multilevel theory (F. Hekking et al.) J. Claudon etal, Phys. Rev. Lett. 2004 ncoh (MHz) n01 MW amplitude : W1/2p (MHz)

  23. 250 200 150 100 coherent superposition of excited states 50 |0 0 0 50 100 150 200 250 300 Multilevel coherent oscillations solid line = multilevel theory (F. Hekking et al.) 2-level limit 2 J. Claudon etal, Phys. Rev. Lett. 2004 ncoh (MHz) 1 n01 MW amplitude : W1/2p (MHz) W1«n01-n12 Rabi oscillations between |0 and |1 cf. J. Martinis et al.

  24. 250 200 150 100 coherent superposition of excited states 50 1 |0 p1 0 0.5 Populations 0 50 100 150 200 250 300 p2 0 0 5 10 15 20 25 30 Tmw (ns) Multilevel coherent oscillations solid line = multilevel theory (F. Hekking et al.) 2-level limit 2 3 J. Claudon etal, Phys. Rev. Lett. 2004 ncoh (MHz) n01 MW amplitude : W1/2p (MHz) p2 < 12 % close to a 2-level oscillation

  25. 250 200 150 100 coherent superposition of excited states 50 1 |0 0 p1 0.5 Populations 0 50 100 150 200 250 300 p2 p3 0 0 2 4 6 8 10 12 14 16 Tmw (ns) Multilevel coherent oscillations solid line = multilevel theory (F. Hekking et al.) 2-level limit 2 3 J. Claudon etal, Phys. Rev. Lett. 2004 ncoh (MHz) MW amplitude : W1/2p (MHz) p3 < 3 % 3-level oscillation

  26. 250 200 150 100 coherent superposition of excited states 50 |0 0 0 50 100 150 200 250 300 Multilevel coherent oscillations solid line = multilevel theory (F. Hekking et al.) 2-level limit 2 3 J. Claudon etal, Phys. Rev. Lett. 2004 ncoh (MHz) 4 MW amplitude : W1/2p (MHz) W1»n01-n12 # involved levels  1 oscillations still exist classical description ?

  27. Classical Rabi-type oscillations U(j) n, W1 j(t) j(t) ncoh • At t=0, MW on • transient : anharmonicity of the well • modulation of the phased-locked state • energy modulation with frequency  ncoh (a. u.) • small excitation power & n = wp/2p Rabi-type oscillations in a classical Josephson junction N. Grønbech-Jensen and M. Cirillo (2005) cond-mat/0502521 A. Ratchov and F. Faure (LP2MC-Grenoble) unpublished

  28. 250 classical theory with n=wp/2p 200 150 100 50 0 0 50 100 150 200 250 300 Quantum VS classical description # involved levels 2 3 4 quantum theory with n=n01 ncoh (MHz) αΩ12/3 • Low excitation power : • quantum description • Higher excitation power • qualitative agreement • between classical and • quantum descriptions n01-n12 = 160 MHz αΩ1 MW amplitude : W1/2p (MHz)

  29. |2 MQT |1 |0 Outline • I. Experimental setup • II. Finite lifetime of the ground state • MQT measurement and LF noise • III. Quantum dynamics • Multilevel coherent oscillations • Comparison to classical oscillations • IV. Incoherent processes in the 2 level limit • Low power spectroscopy • Energy relaxation MW |2 |1 |0 |1 Gr |0

  30. 12 3 Ib (mA) 2 11 Ic 1 10 0 8 -0.5 0 0.5 9 Fb/F0 6 8 7 4 solid lines : semi-classical theory for X2X3 potential 0.5 1 1.5 2 2.5 2 SQUID electrical parameters 8 8.1 8.2 8.3 8.4 8.5 I0 = 1.242 A C0= 560 fF LS = 250 pH  = 0.414 Low power spectroscopy : resonance frequency n01 (GHz) Ib (mA) n01 ~ gaussian shape Pesc (%) n (GHz)

  31. 12 3 Ib (mA) 2 11 Ic 1 10 0 8 -0.5 0 0.5 9 250 Fb/F0 200 6 8 150 7 4 100 50 2 8 8.1 8.2 8.3 8.4 8.5 0 0.5 1 1.5 2 2.5 Low power spectroscopy : resonance linewidth n01 (GHz) ~ gaussian shape Dn (MHz) Pesc (%) Dn Ic Ic n (GHz) Ib (mA)

  32. 8 12 n01 11 6 Dm 10 120 4 9 100 8 2 80 7 60 0 0 0.1 0.2 0.3 0.4 0.5 0.6 40 0.5 1 1.5 2 2.5 Ib (mA) Energy relaxation Ib = 2.222 mA, Fb = -0.117 F0 1/Gr for different bias points n01 (GHz) Pesc (%) 1 / Gr (ns) Dm (ms) solid line Ic Ic 1 / Gr = 90 ns Qr = 6000

  33. current fluctuations flux fluctuations Transverse and longitudinal coupling SQUID coupling terms environment linear eigenbasis { |0 , |1 } transverse longitudinal relaxation “pure” dephasing

  34. LF flux fluctuators Relevant fluctuations sources Rmcs Rp(w) Loc Lf dI dF Cp Cmsc chip ~ 25mK Heavy filtering and shielding significant fluctuations sources located close to the SQUID quantum fluctuation dissipation theorem • electrical circuit • LF flux fluctuators MQT measurements [0.2Hz,20kHz]

  35. 12 Loc 11 Rp(w) 10 120 9 100 8 80 7 60 40 0.5 1 1.5 2 2.5 Energy relaxation Environment at high frequencies (> 5GHz) gold capacitor n01 (GHz) hypothesis :no high frequency flux noise 1 / Gr (ns) Ic Ic consistent with skin effect estimations Ib (mA) Dissipation is induced by the gold filtering capacitor

  36. STEP 1 Analysis of spectroscopic results reduced density matrix : (interaction frame) NOISE inelastic processes “pure” dephasing hypothesis : • gaussian fluctuations • linear coupling 0.2 Hz 20 kHz flux noise : f neglected (static approximation)

  37. Analysis of spectroscopic results current noise : STEP 2 Linear response NOISE NO MW NOISE MW (linear regime) Fourier transform resonance line shape Dn

  38. 12 11 10 9 250 200 8 150 7 100 50 0 0.5 1 1.5 2 2.5 Low power spectroscopy for various bias points n01 (GHz) • fit without free parameter • Ib Ic : Dn (MHz) longitudinal noise sensitivity and Ic Ic Dn Ib (mA)

  39. MQT & LF flux noise 250 20 DI(nA) MQT 18 200 Fb/F0 16 150 2 3 4 250 14 ncoh (MHz) αΩ12/3 100 200 12 αΩ1 150 50 10 W1/2p (MHz) 100 0 -0.5 0 0.5 50 0 50 100 150 200 250 300 Dn (MHz) 0 0.5 1 1.5 2 2.5 Ic Ic Ib (mA) Conclusion • MQT measurements : a probe to low frequency noise • Multilevel coherent oscillations • Incoherent processes in the 2 level limit

More Related