1 / 35

Pauker Learning Strategies Robert A. Pauker , Ed.D Jacob C. Greenwood

Pauker Learning Strategies Robert A. Pauker , Ed.D Jacob C. Greenwood. From “The Structured Writing and Thinking Program” by Dr. Robert A. Pauker. Objectives. Charts, graphs, and pictures Introduction of techniques: Bob Regents chart example - Earth Science: Jake

udell
Download Presentation

Pauker Learning Strategies Robert A. Pauker , Ed.D Jacob C. Greenwood

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pauker Learning StrategiesRobert A. Pauker, Ed.D Jacob C. Greenwood From “The Structured Writing and Thinking Program” by Dr. Robert A. Pauker

  2. Objectives • Charts, graphs, and pictures • Introduction of techniques: Bob • Regents chart example - Earth Science: Jake • Regents problem example (categorizing by type of problem) - Chemistry: Jake • Participants produce a representative example • Organizer • Introduction of technique: Jake • Regents Organizer example - Biology: Jake • Participants produce a representative example • Analytical Notes • Introduction of technique: Bob • Regents short answer Analytical Notes example - Chemistry: Jake • Participants produce a representative example

  3. Charts, graphs, and pictures Regents Earth Science Jan ’09 #13

  4. Question Prompts • What is this picture about? • What is one very important idea in this picture?  • What are two details you observe in the picture? • What is one question that I would like answered about the topic?

  5. Answer (4)

  6. AP Biology

  7. Question Prompts • What is this graph about? • What is one very important idea in this graph? • What are two details you observe in the graph? • What is one question that I would like answered about the topic?

  8. Categorizing Problems • Determining the concentration of an acid by titration (PH pg. 616, Regents Chemistry Jan ’09) • #47. A 25.0 mL sample of HNO3 (aq) is neutralized by 32.1 mL of .150 M KOH (aq). What is the molarity of the HNO3 (aq)? • What is this problem about? • What is one very important idea in this problem • What are two details you observe in the problem • What is one question that I would like answered about the topic?

  9. Categorizing Problems • Known: molarity base: .15M KOHvolume acid: 25mL = .025L (will students know to convert to L?)volume base: 32.1mL = .0321LHNO3 + KOH  KNO3 + H2O (will students know how to generate this equation?) • Unknown: molarity acid = ?M KNO3

  10. Categorizing Problems • Calculate: .032L KOH x .15M KOH x 1 mol HNO3= .0048 mol HNO3= .192 M [HNO3] 1L KOH 1 mol KOH .025L ANSWER: (3) 0.193 M

  11. Categorizing Problems • Could we use this same approach to categorize other problems (such as neutralizing acids)? • Mole-volume relationships (STP) • Specific heat • Percent composition

  12. Using the Organizer.Keep this in mind. • Student comprehension increases markedly when the students generate prediction questions related to the key objectives of the lesson.

  13. From pre-learning to post-learning • This strategy is a simple methodology which teaches students how to generate valid sets of prediction questions prior to the learning. • These questions become the basis for a study guide to be used in post-learning.

  14. A focus on objectives • The Organizer is a series of three statements that reflect the key objectives of the lesson or sequence of lessons. • Each sentence focuses on one of the objectives. • These sentences provide the students with a basic structure through which they can predict important facts, ideas, and concepts that are part of the learning.

  15. The mighty Organizer • Students will use the Organizer as a springboard for asking prediction questions which might be answered in the content of the lesson(s). • Because the questions are generated before the learning, the word “might” becomes very significant. • The word “might” gives students freedom to take chances in their questioning and facilitates structured risk-taking encouraging critical thinking.

  16. Procedures • The teacher generates 2-3 objectives and statements as an overview to a unit. • The objective statements are adapted from the course curriculum and provide a framework for the production of the statements. • The teacher provides each student with a sheet of paper containing the statements separated by enough space for students to generate multiple questions.

  17. Procedures • The teacher asks the students to read statement 1 to himself/herself while the teacher reads it aloud. • For a first time use, the teacher may generate a few questions orally with the class. • Next, students have one minute to write as many possible questions they think might be answered during the learning related to statement 1.

  18. Procedures • After one minute, the students will quickly share their questions orally under the direction of the teacher. • Students are encouraged to add any new or interesting questions to their lists.

  19. Procedures • The purpose is not to generate correct questions. • The purpose is to generate a valid set of questions that might be answered in the content. • Students should feel free to write questions which seems a “bit removed” from the sentence as long as they write the questions sincerely.

  20. Procedures • After about ten minutes of sharing, listening, and writing the teacher discusses the objectives and has students reflect on their prediction questions.

  21. Helpful hints • The Organizer statements need to be relatively short. Statements should not exceed fifteen words. It is better to write sentences that are too short rather than too long. • Each statement must reflect one objective. • The Organizer cannot contain technical words that students have not experienced previously.

  22. Helpful hints • Assessment should be based upon the statements that are in the Organizer. • In essence, students begin to internalize that if they learn all they can about the three statements then they will do well on the assessment.

  23. Helpful hints • The teacher never evaluates the questions. • If students hear evaluative comments, then they worry about generating the “right” questions. • This will lead to fewer questions and lower level of critical thinking.

  24. Long-term Retention • The questions generated by the students will increase long-term recall as they associate new learning with the questions they generated in pre-learning. • This means students can use the Organizer after a period of time to retrieve key ideas.

  25. Post-learning • As the learning ensues, students should place a check mark next to any question related to content covered. • The checked questions become a study guide that the students have created. • Students should not be expected to answer their checked questions. • Instead, they asked to think about the information they have learned related to a checked question.

  26. Post-learning • The checked questions become a basis for class discussion as well as reflection. The teacher can stop at regular intervals and ask if any checked questions would be relevant to discuss. • The teacher can encourage the students to record notes during the class discussions in order to enhance comprehension. • If students treat this note-taking seriously, they can use the class discussion as a means to increase their understanding.

  27. Post-learning • Once students have obtained a reasonable level of comprehension, the questions can be used in study groups to discuss the sequence of lessons or the questions can be used as a source of review. • Assessments can be based on the Organizer statements. • Since the Organizer statements represent objectives, teachers are basing their assessments on their original purposes for learning.

  28. Organizer Example • Organizer: Carbohydrates (sugars) • Statement 1: Carbohydrates are organisms’ primary energy source and used for short-term energy storage • Statement 2: Large carbohydrates compose plant cell walls and can be found in the muscles of mammals. • Statement 3: Large carbohydrates are composed of smaller carbohydrates covalently bonded together • Organizer: Lipids (fats) • Statement 1: Lipids are used for long-term energy storage • Statement 2: Lipids repel water and can found in the outer membrane of all cells. • Statement 3: Lipids can be saturated or unsaturated. 

  29. Organizer Example • Organizer: Proteins • Statement 1: Proteins compose all cells. • Statement 2: Proteins speed up the rate of chemical reactions. • Statement 3: Only 20 smaller units compose all proteins. • Organizer: Nucleic Acids • Statement 1: Nucleic acids determine the structure of proteins. • Statement 2: Nucleic acids are the hereditary material of life. • Statement 3: The universal energy molecule in all living things is a nucleic acid.

  30. Organizer Regents Earth Science Jan ’01 #13

  31. Analytical Notes Regents Chemistry Jan ’09 #72-74 • Soil pH can affect the development of plants. For example, a hydrangea plant produces blue flowers in acidic soil but pink flowers in basic soil. Evergreen plants can show a yellowing of foliage, called chlorosis, when grown in soil that is too basic Acidic soil can be neutralized by treating it with calcium hydroxide Ca(OH)2, commonly called slaked lime. Slaked lime is slightly soluble in water.

  32. Analytical Notes

  33. Analytical Notes • Would this help you answer these questions? • 72. Compare the hydrogen ion concentration to the hydroxide ion concentration in soil when a hydrangea plant produces pink flowers. • 73. An evergreen plant has yellowing foliage. The soil surrounding the plant is tested with methyl orange and bromthymol blue. Both indicators turn yellow in the soil tests. State, in terms on pH value, why the yellowing of the plant is not due to chlorosis. • 74. Write an equation, using symbols or words, for the neutralization of the ions in acidic soil by the ions released by slaked lime in water.

  34. Analytical Notes • Try one from an article… • http://www.biologynews.net/archives/2009/11/03/study_sheds_light_on_evolution_of_human_complexity.html

  35. Resources • http://www.nysedregents.org/testing/hsregents.html • http://rhscll.wikispaces.com/

More Related