1 / 17

罗 汉

数据建模. 拟合与回归. 罗 汉. ( 湖南大学 数学与计量经济学院 ). 线性最小二乘法. 一 . 拟合. 设有变量 x , y ,根据它们的一组数据 ( x i , y i ) ,i =1,2, … , n ,视为平面上的 n 个点,寻求一个函数 y = f ( x ) ,使 y = f ( x ) 在某种准则下与所有的数据点 ( x i , y i ) 总体上最接近。. 设变量 x , y , 数据 ( x i , y i ) , i =1, 2, … , n ,.

ull
Download Presentation

罗 汉

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 数据建模 拟合与回归 罗 汉 ( 湖南大学 数学与计量经济学院)

  2. 线性最小二乘法 一.拟合. 设有变量x, y,根据它们的一组数据(xi, yi) ,i=1,2, …,n,视为平面上的 n 个点,寻求一个函数 y=f (x),使 y= f (x)在某种准则下与所有的数据点(xi, yi)总体上最接近。 设变量x, y,数据(xi, yi) , i =1, 2, …, n, 考虑 y= a +bx,a, b为待定系数 Q(a, b)= min

  3. 其中 Q(a, b)= min 令 解得 y = a +bx 故得到

  4. Q(b1,b2 ,…,bm)= 一般地,选定一组函数rk(x), k = 1,2, …,m,令 f (x)=b1r1(x)+ b2r2(x) +… + bmrm(x) 其中bk是待定系数, k = 1,2, …,m min 当 {r1(x), r2(x) ,…, rm(x)} 线性无关时,R列满秩,故RTR可逆,

  5. 二、回归. 称为y对x的回归函数 其中e为随机误差 经验回归方程 回归分析 (1)建立回归模型(经验方程) (2)对回归模型可信度进行检验 (3)判断自变量 x 对 y 的影响是否显著 (4)诊断回归模型是否适合这组数据 (5)利用模型进行预报和控制

  6. 三、一元线性回归模型. y =a + bx + e 得yi=a + bxi+ ei 对n 组数据 ( xi , yi) i =1,2, …, n (2) Var( ei) = 2; 假设 (1) E( ei ) = 0; (3) Cov( ei,ej ) = 0,i  j; (4) Cov( ei,Xi ) = 0; (5) e ~ N (0,2). OLS估计:min Q(a, b)= 得 故得

  7. 则 且有 回归模型的统计检验: (1) 回归系数的显著性检验 ( t 检验 ) H0: b = 0. 检验统计量 拒绝域

  8. (2) 回归方程的显著性检验 ( F 检验 ) H0: b = 0. 检验统计量 拒绝域 (3) 拟合优度检验 样本决定系数

  9. 例1.我国的人均消费和国民收入. 我国1981年到1993年我国的人均消费金额和人均国民收入的统计资料如下(单位:人民币元;资料来源:《中国统计年鉴1993》)

  10. 例3.温度对红铃虫产卵的影响. 一只红铃虫的产卵数y (枚)与温度 x (ºC)有关,一组抽样的统计数据如下:

  11. 三、多元线性回归模型. y =b0+ b1x1 + b2x2 + … + bkxk+e 对 n 组数据 (xi1, xi2, …, xik , yi) i =1,2, …, n 记 Y = Xb + e 假设 (1) E(e) = 0; (2) E(eeT ) = 2I; OLS估计: min Q(b)=|| Y –Xb ||2 (3) E(XTe) = 0; 得 (4) rank(X) = k+1; (5) e ~ N (0,2I ).

  12. 例1.国家财政收入模型.

  13. 设理论模型 OLS估计

  14. 例2.我国的粮食生产模型.

  15. Thank you

More Related