200 likes | 332 Views
Noisy Group T esti ng (quick and efficient ). Mohammad Jahangoshahi Sheng Cai Mayank Bakshi Sidharth Jaggi. GROTESQUE : Noisy GRO up TES ting ( QU ick and E fficient). Mohammad Jahangoshahi Sheng Cai Mayank Bakshi Sidharth Jaggi. n-d. q. d. 0. 1. q. 0. 1.
E N D
Noisy Group Testing (quick and efficient) Mohammad Jahangoshahi ShengCai MayankBakshi SidharthJaggi
GROTESQUE: Noisy GROupTESting(QUickand Efficient) Mohammad Jahangoshahi ShengCai MayankBakshi SidharthJaggi
n-d q d 0 1 q 0 1 For Pr(error)< ε , Lower bound: What’s known …[CCJS11] Noisy Combinatorial OMP:
This work #Tests Adaptive Non-Adaptive Lower bound Two-Stage Adaptive [NPR12] O(poly(D)log(N)),O(D2log(N)) O(DN),O(Dlog(N)) Lower bound Decoding complexity
This work #Tests Decoding complexity
Localization Noiseless: ? Noisy:
Nail: “Good” Partioning nitems ddefectives GROTESQUE
Adaptive Group Testing • O(n/d)
Adaptive Group Testing GROTESQUE GROTESQUE O(dlog(n)) time, tests, constant fraction recovered GROTESQUE GROTESQUE • O(n/d)
Adaptive Group Testing • Each stage constant fraction recovered • # tests, time decaying geometrically
Adaptive Group Testing • T=O(logD)
Non-Adaptive Group Testing • O(Dlog(D)) • Constant fraction “good”
Non-Adaptive Group Testing • Iterative Decoding
2-Stage Adaptive Group Testing • =D2 • O(Dlog(D)log(D2)) tests, time
2-Stage Adaptive Group Testing • =D2 • O(Dlog(D)log(D2)) tests, time • No defectives share the same “birthday” when S=poly(D)
2-Stage Adaptive Group Testing • =D2 • O(Dlog(N)) tests, time