1 / 27

Teilchenphysik – ohne Beschleuniger und Kosmologie

Teilchenphysik – ohne Beschleuniger und Kosmologie. 31.5.07 Sommersemester 2007. 2. CP-Verletzung. H.W. Wilschut. P. C. T. matter. anti-matter. time   t ime. mirror image. Time reversal violation can be measured at low energies.

uma-wagner
Download Presentation

Teilchenphysik – ohne Beschleuniger und Kosmologie

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teilchenphysik – ohne Beschleunigerund Kosmologie 31.5.07 Sommersemester 2007

  2. 2. CP-Verletzung

  3. H.W. Wilschut P C T matter anti-matter time  time mirror image Time reversal violation can be measured at low energies 3. Symmetries and the World according to Escher identical to start start anti-particle particle e+ e-

  4. BABAR 2001

  5. + - + - 3. Prinzip: CP-Verletzung spin P - (P - known) elementary particle + EDM + T (CP big deal) - CP ↔ T S. Paul, TUM

  6. ILL: the EDM experiment

  7. 50 pT Final Sussex-RAL-ILL result use of 199Hg co-magnetometer d(199Hg) < 8.7 × 10-28ecm (C.A. Baker et al. PRL 97(2006) 131801) | dn | < 2.9 x 10-26ecm (90% CL)

  8. EDM: PSI F overall = 100

  9. The PNPI experiment EDM • Polarize neutrons || B0 while filling the bottle • Apply B(wt)  B0 to get neutron spin  to B0 • Wait for a time T (~100 s): spin precesses about B0 • Apply B(wt) to get neutron spin || to B0; if w wL  = (w -wL )T • Analyze polarization: P = P0 cos()

  10. Improvements Mainly performed by the group at PNPI (V. Lobashev et al.): official collaboration agreement with TUM • higher degree of polarization – triple polarizers: a = 0.75 • higher electric field E - new material (CERAN): E = 10 kV/cm • more neutrons N- FRM II + UCN source, more efficient neutron guides • longer storage time T - better coating, better stability of B0: T 150 s • Systematic errors: stable B0 (3fT!) - 3He magnetometer with SQIDs (W. Heil, Mainz), better shielding, polarization and analysis with the same arrangement

  11. Überblick zur die Sensitivität von Neutronexperimenten • EDM: Energy: E ~0.000 000 000 000 000 000 000 1eV = 10-22 eV • n-Ladung: Impuls: p/p ~ 10-11(Winkelauflösung von 1Å auf 10m) • Feinstrukturkonstante /~ 10-8(Messung von: nvn) • Quark-Mischung  Vud ~ 7 x10-4 • Lebensdauer / ~ 10-3 • Gravitation und QM g/g ~ 10-2

  12. EDM Strong CP problem • Axion als pseudoskalares Teilchen

  13. Axion limits 2007 Baeßler et al. Westphal, Baeßler, H.A. PVLAS arXiv:hep-ph/0703108 UCN other limits

  14. 2. Prinzip: Mischung der Quarks • -Zerfall: ~ GF2 • n-Zerfall:~ 0.95. GF2 = cos2C. GF2 • K-Zerfall: :~ 0.05. GF2 = sin2C. GF2 Quarkmischung ist Rotation im Flavour-Raum (Null-Summe) CKM-Matrix ist unitär!

  15. Unitarity Check: The Quark Mixing CKM Matrix Parametrization: 3 angles, and a phase A, ,  are real

  16. Unitarity Check II: PDG:  = 59°  13°,  = 24°  4°

  17. Unitarity Check II Vud= 1 - 2/2 • dsf From A. Buras, Munich

  18. Unitarity check Vub 0.00001% Vus 5% Mixing of quarks = rotation in flavor-space: Test in first row: |Vud|2 + |Vus|2 + |Vub|2 ≈ cos2θ + sin2θ + 0 < 1 ? : Cabibbo Vud 95%

  19. Situation 1995 - 2004

  20. The PDG feels it has the right to redefine anything it wants • 1994: • The “centimeters” on the ruler on p. 227 of the booklet • are 0.97 cm long, because: • The booklet were returned from the printer at 0.25 times • the speed of light • A theorist is in charge of the PDG • The PDG feels it has the right to redefine anything it wants • There is a general decline of standards • There was an international conspiracy • It was a congressionally mandated cost-saving measure • PDG gives you more cm/inch than anyone else Is there a general decline of standards?

  21. Vus • Kaon semileptonic decays • K+p0l+nl • K0Lp-l+nlsul+nl D = (2.12±0.08%), d = -2.0% for K+ and 0.5% for K0 • I+ = 0.1605 ± 0.0009, I0 = 0.1561 ± 0.0008 • G+ = (2.56 ± 0.033)10-15 MeV, G0=(4.937 ± 0.053)10-15 MeV • f(0) = 0.961 ± 0.008, f(0) = 0.963 ± 0.004  Vus = 0.2196 ± 0.0017exp ± 0.0018th = 0.2196 ± 0.0026 (PDG 2002)

  22. Some news in 2005: Vus b

  23. CKM unitarity summary • Phase of consolidation • Achievements: • New K results • New A result • Halving of the theoretical error in radiative corrections • Continue to measure lifetime and correlation coefficients until limited by theory • Lifetime • Formfactors

  24. Neutronlebensdauer • Methode: UCN in Flaschen • Präzision / ~ 10-3 ~ 99.99 % elastische Reflexion ~ 0.01% inelastische Reflexion in meV-Bereich ~0.001% Absorption 885.7 ± 0.7 sec  878.5 ± 0.8 sec TUM TUM: magnetische Speicherung: keine Verluste

  25. 2 values 878.5 ± 0.8 sec Serebrov et al. 885.7 ± 0.7 sec PDG 2005  = 2 x 10-6

  26. Neutrons and Big Bang Nucleo Synthesis • Problem 1s after Big Bang: • What does a gas of n and p, when the universe expands and the temperature drops? • Inputs: • neutron lifetime  • Cross sections • neutrino cross-sections   1/ • nuclear physics 0.1 – 1 MeV (measured!) • Outputs: H, D, He, Li • number of particle families N • density  of (ordinary) matter in universe

  27. In more detail (1+ 3gA2) • Weak reaction rate n + e+  p + e n + e  p + e • Hubble expansion rate • Equating gives freeze out temp. • Free neutron beta-decay Neutron lifetime PDG 2006 Serebrov et al. 2005 Yp=0.2463(6) Yp=0.2479(6) astro-ph/0408523 v2

More Related