1 / 18

ALMA Extended Array

ALMA Extended Array. Thermal Universe with a VLBI resolution. Seiji Kameno (Joint ALMA Observatory) Naomasa Nakai (Tsukuba U.) Yoichi Takeda, Kiyoto Shibasaki, Mareki Honma, Tomoya Hirota (NAOJ) Yoichi Tamura (IoA Tokyo U.). Calama. 7 stations in 300-km range. ALMA-AOS. ALMA-OSF.

uma
Download Presentation

ALMA Extended Array

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ALMA Extended Array Thermal Universe with a VLBI resolution Seiji Kameno (Joint ALMA Observatory)Naomasa Nakai (Tsukuba U.) Yoichi Takeda, Kiyoto Shibasaki, Mareki Honma, Tomoya Hirota (NAOJ) Yoichi Tamura (IoA Tokyo U.) Calama 7 stations in 300-km range ALMA-AOS ALMA-OSF Llama-SAC Zaldívar Llama-Macon Llullaillaco

  2. ALMA extened array VLBI resolution for Thermal emission Precise images than ALMA New parameter space (e.g. stellar images) ALMA extended array, compared w/ ALMA and VLBI ALMA VLBI • Dense array (10m - 15 km) • Tb sensitivity ~10 K • Resolution ~ 10 - 100 mas • Long baseline (~1000 km) • Tb sensitivity ~108 K • Resolution ~ 0.1 - 1 mas Targetting dark/cold unverse Extreme resolution for non-thermal sources

  3. Thermal universe w/ VLBI resolution • Stations : ~ 5 + 2 (from Llama) • Sensitivity : σ=2 μJy@3600 sec • (20 μJy without ALMA) • Resolution: 0.6 mas • Tb detection limit: 5σ = 1000 K • (3000 K without ALMA) Essential point of the ALMA extended array Baseline-to-aperture ratio = aperture filling factor 300-km baseline is the upper limit for detecting thermal emission

  4. Array config. Thermal Universe with a VLBI resolution 300-km baseline is the upper limit for detecting thermal emission Calama 7 stations in 300-km range ALMA-AOS ALMA-OSF Zaldívar Llama-SAC Llama-Macon Llullaillaco • Alt.> 3000 m for 350 GHz • Access roads • Baseline length:24 - 300 km • (u, v) coverage : E-W and N-S direction • Llama project, preparing 2 stations in Argentine

  5. AOS - OSF 24-km interferometry

  6. Thermal Universe with a VLBI resolution Science Case 1 Super massive black holes : formation and fueling

  7. Science highlights : Black Holes Supermassive Black Holes (SMBHs) in galaxies Sub-mm galaxies discovered with ASTE (Tamura+09 Nature, 459, 61) • Sub-mm galaxies in the early Universe • Search for SMBHs in high-z galaxies • Clarify Galaxy / SMBH co-evolution • High resolution to discriminate AGN from SB Evolving BH in a galaxy (artist’s impression) SED of SgrA* RIAF disk (Yuan+03 ApJ, 598, 301) • BH engines in nearby AGNs • Mass accretion process from galactic disk to BH • Census for RIAF at sub-mm SED peak • Imaging BH+accretion disk(as a part of sub-mm VLBI)

  8. Mass accretion processes from galactic disk onto SMBH How does matter lose angular momentum? What is the source: Stars, Gas, or Dust? Galactic rotation ↓ BH-bound rotation in 1-10 pc Cen A w/ SMA : Espada+09, ApJ, 695, 116 Spatial resolution imaged by AeA 福江純「輝くブラックホール 降着円盤」p.162

  9. Imaging dust torus (土居2012:AEA workshop)

  10. Approaching the central engine of AGNs Radio ‘photosphere’ of the jet …frequency dependent • Hi-Fi imaging at > 40 GHz • High frequency to see through jets • High dynamic range to discriminate the disk from jets • Middle baseline (~ a few 100 km) to fill (u, v) hole in sub-mm VLBI Black-hole positioning by multifrequency core-position offset (Hada+11, Nature, 477, 185) Simulation images : Nagakura & Takahashi (2010)

  11. Thermal Universe with a VLBI resolution Science Case 2 Stellar imaging and size measurements

  12. Science highlights : Stars Stellar physics Betelgeuse NIR image (10-mas resolution) (Kervella+09, A&A, 504, 115) NIR visibilities • Imaging photospheres of nearby giants / supergiants • 100 x 100 pixel images for Betelgeuse and Antares • Flares, Prominences, CME • Convection cells / Dynamo • Motion of active regions • Long-term monitor for magnetic inversion The sun imaged with the Nobeyama Radio Heliograph (180 x 180 pixel) comparable w/ the sun Betelgeuse H-band image (9-mas resolution) (Haubois+09, A&A, 508, 923)

  13. ALMA stellar imaging Size measurements (photosphere imaging) of nearby Giants • Stellar apparent diameter • Flux density Antares (700 R8, 175 pc) → 40 mas e.g. 3000 K, 300 R8@ 1 kpc → 7 mJy → 7σ detection requires 30-min integ. w/ ALMA Stellar Radio Astronomy • to bring • stellar imaging capability • size measurements • distance estimation ← 60μJy without ALMA 3σ@3600 sec ← 6μJy 3σ@3600 sec

  14. Stellar size measurements Imaging giants@1 kpc Size measuring giants@10 kpc, main sequence@70pc M dwarf @ 10 pc can be measured to determine its mass Distance determination without annual parallax Size measurement of aM dwarf star if we can estimate the linear size - toward Galactic Center - more than 20,000 sources ← 6μJy 3σ@3600 sec

  15. Science goals of stellar size / imaging • Science goals : phase 1 • 500 supergiants to be imaged (δ < 20º, K < 6 mag, lumi. class I and II) • 1-hour / source → 500 hours • Verify previously measured size and distance • Establish size-spectral type-luminosity relation • Surface activity (flares, spots, convection cells) • Binary systems 500 supergiants for phase 1 • Science goals : phase 2 • 20000 giants (δ < 20º, lumi. class III) • 4 sources / hour → 5000 hours • Angular diameter → distance • Precise galactic structure and dynamics beyond the center (NA w/ GAIA) • Whole lifecycle of stars • BH mass accretion by stellar dynamics

  16. AEA workshop on Nov. 2012 http://milkyway.sci.kagoshima-u.ac.jp/groups/workshopalmaextendedarray2012/ Early Universe / AGN Requirements for better Tb (~ 100 K) sensitivity • thermal emission from dust torus • counter / diffuse jets → shorter baseline (up to 100 km) Steller imaging Requirements for better resolution : θ ~ 0.3 mas • main sequence stars • convection cells • transit of planets • Longer baseline (~600 km) • Shorter wavelengths (~650 GHz) • Increase # of stations? Feedbacks from science requirements are welcome!

  17. Requirements Specifications RX / Backends Site survey Antenna Tests Infrastructure Technical development Full Op. Summary : AEA = ALMA sensitivity + VLBI resolution Site candidates (need survey) • 12 m (ALMA design) x 5 antennas • BW 16 GHz (4 GHz x 2SB x Dual pol.) • Baseline 300 km Schedule Cost total ~ $100M

  18. Technical Issues • Site survey • Higher altitude / sufficient (u, v) coverage • Sub-mm coherence at long baselines • LO distribution / individual frequency standards? • Phase compensation : switching / VERA-like dual beam? • Fiber connection • > 100 km optical fibre / VLBI recording? • Correlator • Number of baselines, faster phase tracking, larger delay buffer • Calibration plan • Are there good calibrators? • Operation planning • Impacts on ALMA • Multi-Frequency Synthesis

More Related