1 / 54

Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes.

Olivier Geoffroy, Pier Siebesma (KNMI), Jean-Louis Brenguier, Frederic Burnet (Météo-France). Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes. Problematic, methodology and measurements Cloud spectrum: results Rain spectrum: results

umay
Download Presentation

Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Olivier Geoffroy, Pier Siebesma (KNMI), Jean-Louis Brenguier, Frederic Burnet (Météo-France) Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes. • Problematic, methodology and measurements • Cloud spectrum: results • Rain spectrum: results • Sensitivity tests in shallow cumulus simulations. • Z-R relationship

  2. Problematic Nc (M0) & qc (~M3), Nr (M0) & qr (~M3) Bulk prognostics variables = Interaction with radiative transfert: Microphysical processes / variables Radar reflectivity: Cloud Sedim: Cond/evap: autoconversion: ~SM1 =M6 τ~M2 Radar reflectivity: Rainevap: RainSedim =M6 ~M1 & M2 To derive other moments from M0 & M3, M0 & M3 it is necessary to make an assumption about the shape of the CDSD and the RDSD

  3. Common distributions Generalized Gamma Lognormal α=3 Mass distri = Gamma α=1 Size distri = Gamma ν =1 ν =6 ν=11 = Marshall Palmer 4 parameters M0, M3 = prognostics α =1 or 3 3 parameters M0, M3 = prognostics ν =? σg=? Are Lognormal, Gamma, Gamma in mass suitable ? With which value of the width parameter σgor ν?

  4. Observationnal data Data = particule counters in situ Measurements at 1Hz resolution (~ 100 m). campaign ACE-2 : 8 cases of Sc RICO : 7 cases of Cu flight plan Instruments Fast FSSP : ~2 ~50 µm OAP-260-X : 5635 µm 2DP-200X: 245 12645 µm Fast FSSP : ~2 ~40 µm OAP-200-X : 35 310 µm • Sc and Cu spectra • Measurements at each levels in the BL • ~100 m resolution • Complete hydrometeors spectra : 1 µm to 10 mm

  5. Methodology For each spectrum: Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra Cloud Rain D0 D0 = 75 µm

  6. Methodology For each spectrum: Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra Cloud Rain D0 M1 D0 = 75 µm qc, Nc Lognormal σ g

  7. Methodology For each spectrum: Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra Cloud Rain D0 M6 M1 M2 M5 D0 = 75 µm qc, Nc Lognormal σ g σ g σ g σ g

  8. Methodology For each spectrum: Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra Cloud Rain D0 M6 M1 M2 M5 D0 = 75 µm qc, Nc Lognormal σ g σ g σ g σ g Gamma ν1 ν1 ν1 ν1

  9. Methodology For each spectrum: Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra Cloud Rain D0 M6 M1 M2 M5 D0 = 75 µm qc, Nc Lognormal σ g σ g σ g σ g Gamma ν1 ν1 ν1 ν1 ν3 ν3 ν3 ν3 Gamma in mass

  10. Methodology For each spectrum: Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra Rain: ACE-2 : not used RICO : 2860 spectra Cloud Rain D0 M6 M6 M1 M2 M5 M1 M2 M4 D0 = 75 µm qc, Nc qr, Nr Lognormal σ g σ g σ g σ g σ g σ g σ g σ g Gamma ν1 ν1 ν1 ν1 ν1 ν1 ν1 ν1 ν3 ν3 ν3 ν3 ν3 ν3 ν3 ν3 Gamma in mass

  11. Plan • Methodology and measurements • Cloud spectrum: results • Rain spectrum: results • Sensitivity tests in shallow cumulus simulations.

  12. Cloud, width parameter=f(M1) Grey points = value of σg that best represent M1 for each spectrum Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each moment class Triangles = value that minimize the standard deviation of the relative errors Mmeasure/Manalytic in each moment class

  13. Cloud, width parameter=f(Mp) Value of the width parameter: Lognormal: Gamma: Gamma in mass: Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each moment class Triangles = value that minimize the standard deviation of the relative errors Mmeasure/Manalyticin each moment class

  14. Cloud, width parameter=f(qc) Parameterization formulation : Lognormal: Gamma: Gamma in mass: Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each LWC class Triangles = value that minimize the standard deviation of the relative errors Mmeasure/Manalyticin each LWC class

  15. Cloud, relative error=f(Mp) Value of the width parameter: Lognormal: Gamma: Gamma in mass:

  16. Cloud, relative error = f(qc) Parameterizations: Lognormal: Gamma: Gamma in mass:

  17. Cloud, relative error=f(Mp) Value of the width parameter: Lognormal: Gamma: Gamma in mass:

  18. Cloud, relative error = f(qc) Parameterizations: Lognormal: Gamma: Gamma in mass:

  19. Plan • Methodology and measurements • Cloud spectrum: results • Rain spectrum: results • Sensitivity tests in shallow cumulus simulations.

  20. Rain: Gamma, ν=f(Dv) ν=f(Dv) Seifert (2008) ν=f(Dv) 16 13 10 Stevens and Seifert (2008) 7 4 ν=f(Dv) Marshall and Palmer (1948) 1 Marshall and Palmer (1948) Measurements vs Seifert (2008) results: - Some distributions larger than Marshall Palmer at low Dv - Less narrow distributions at high Dv Differences: - Measurements at every levels in cloud region - Seifert (2008): distribution at the surface, no condensation

  21. Rain: free parameter=f(qr) Parameterizations : Lognormal: Dependance in function of qr  Better results Gamma: Gamma in mass: Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each RWC class Triangles = value that minimize the standard deviation of the relative errors Mmeasure/Manalytic in each RWC class

  22. Rain: relative errors Marshall Palmer Parameterizations: Lognormal: Dependance in function of qr  Better results Gamma: Gamma in mass:

  23. Plan • Problematic, methodology and measurements • Cloud spectrum: results • Rain spectrum: results • Sensitivity tests in shallow cumulus simulations. • Z-R relationship

  24. Sensivity test: RICO case Models of the intercomparison exercise (black) DALES simulations LWP (g m-2) Ensemble of models ν3c=1, νr=1 RWP (g m-2) ν3c=f(lwc), νr=f(lwc) Rsurface (W m-2)

  25. Deeper BL based on RICO -0.6 K Colder θl -0.6 K Moister qt + 2.5 g kg-1 Averaged profiles restart + 0.5 g kg-1

  26. Sensitivity to ν3c Autoconversion rate : (Seifert and Beheng, 2006) =A υc=1  A=8 υc=2  A=3.75 υc=3 A= 2.7 3 10-8

  27. Sensitivity to νr Processes depending on νr : rain sedim, evap, self-collection and break-up width CT CB

  28. Plan • Problematic, methodology and measurements • Cloud spectrum: results • Rain spectrum: results • Sensitivity tests in shallow cumulus simulations. • Z-R relationship

  29. Z-R Z=68 R2 Snodgrass (2009)

  30. Summary • Development of a parameterization of the width parameter of the cloud droplet spectra as a function of the LWC. • Development of a parameterization of the width parameter of the rain drop spectra as a function of the RWC Lognormal: Gamma: Gamma in mass: Lognormal: Gamma:

  31. Z-R Snodgrass: red TRMM: green Only 2dp

  32. Z-R

  33. Sensitivity to νr Processes depending on νr : rain sedim, evap, self-collection and break-up width Fluxprecip CT CB Without rain evaporation • - Sensivity to νr in sedim process  similar results as Stevens and Seifert (2008) • Main sensitivity : sedimentation process. • νr in sedim  RWP • νr in sedim Vqr  evap  LWP  RWP • νr in evap  evap  LWP

  34. Observational data Scatterplot all qr-Nr values Scatterplot all qc-Nc values ACE-2 : 19000 spectra RICO : 8500 spectra ACE-2 : not used RICO : 2860 spectra (RF07, RF08, RF11, RF13)  Large number of spectra typical of Sc and Cu

  35. Measured spectra RICO : 7 cases of Cu ACE-2 : 8 cases of Sc Fast FSSP : ~2 ~50 µm, 266 bins OAP-260-X : 5635 µm, 63 bins, Δbin~ 10 µm 2DP-200X: 45 12645 µm, 63 bins, Δbin~ 200 µm Fast FSSP : ~2~40 µm, 266 bins OAP-200-X : 15 310 µm, 15 bins, Δbin~ 20 µm - Complete hydrometeors spectra : 1 µm to 10 mm

  36. Cloud, absolute error=f(Mp) Parameterization formulation : Normalization: M1: 100 µm cm-3 M2 :1000 µm2 cm-3 M5:107 µm5 cm-3 M6 :109 µm6 cm-3 σ: 1 µm

  37. Cloud, absolute error =f(qc) Parameterization formulation : Normalization: M1: 100 µm cm-3 M2 :1000 µm2 cm-3 M5:107 µm5 cm-3 M6 :109 µm6 cm-3 σ: 1 µm

  38. ACE 2 - RICO

  39. Only ACE 2

  40. Only ACE 2

  41. Only RICO

  42. Only RICO

  43. Rain sedimentation Terminal velocities parameterization (Stevens and Seifert, 2008) : Vqr > VNr V=f(Dv), νr=1 V=f(Dv), νr=6 V=f(Dv), νr=11 Vqr VNr Vqr-VNr Vqr VNr Vqr-VNr Vqr VNr Vqr-VNr broader : νr Vqr ,VNr distribution Vqr-VNr  Size sorting

  44. Rain sedimentation (averaged profiles) sc / b-up : low impact Evap : low impact µ evap but larger droplets  Rsurf  LWP  RWP (peaks)  RWP , Rsurf ν width  Vqr  Rsurf  dRWP /dt  RWP Sedim (large drops) ν width  RWP  evap  LWP (positive feedback)

  45. Rain evaporation Rain mixing ratio rr Rain concentration Nr Cevap = 1  Dv = constant during evaporation (happens if preence of little drops) Cevap = 0  Nr = constant during evaporation (happens if only large drops) Cevap = 0.7 – 1 (A. Seifert personal com)

  46. Cevapsensitivity Cevap=1 Cevap=0.7 Cevap=0 ~2 mm j-1 Cevap = 1  Dv = constant, Nr Cevap = 0  Nr = constant, Dv  evap  LWP and RWP Cevap = 0.7 – 1 (A. Seifert personal com)

  47. Autoconversion, sensitivity Autoconversion rate : = 8 (υc=1) = 3.75 (υc=2) = 2.7 (υc=3) (Cloud droplet width) Collection efficiency kcc=4.44 E9 m3 kg-2 s-1 10.44 E9 m3 kg-2 s-1 ~2 mm j-1 Sensitivity to the coefficients υc(cloud droplet spectra width)

  48. The rain drop distribution Gamma law : with :  1 free parameter : νr 1-D bin model spectra : Gamma law (rr = 0.2 g kg-1, Nr = 10000 m-3) ν=f(Dv) ν 16 νr= 1 νr=6 νr=11 13 = Marshall Palmer 10 7 4 1 Seifert (2008) ν Narrower distribution Dv  νr

  49. νr sensivity νr=1 νr=f(Dv) νr=6 νr=11 Impact due to sedimention ~2 mm j-1 ν RWP evap LWP ν Width Size sorting Vqr Rsurf dRWP /dt RWP (acrr ~ cste)

  50. Precipitating flights : RF07, RF08, RF12 (low vlues and low number of points , 0.10 g m-3), RF13, RF11

More Related