1 / 6

Central Limit Theorem

Central Limit Theorem. Let X 1 , X 2 , …, X n be n independent, identically distributed random variables with mean m and standard deviation s . For large n : S n = X 1 + X 2 +…+ X n is approximately normal with mean n m and standard deviation .

unity-beard
Download Presentation

Central Limit Theorem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Central Limit Theorem • Let X1, X2, …, Xn be n independent, identically distributed random variables with mean m and standard deviation s. For large n: • Sn = X1+X2+…+Xn is approximately normal with mean nm and standard deviation . • The average of the random variables (i.e., the sample mean) is approximately normal with mean m and standard deviation .

  2. 0.3 0.5 0.2 Suppose at each time step a particle has probability 0.3 of moving 1 step to the left, probability 0.5 of moving 1 step to the right and probability 0.2 of staying where it is. Find the probability that after 10,000 time steps the particle is no more than 1000 steps to the right of its starting point.

  3. Conditional Expectation Given an Event • The conditional expectation of a random variable Y given an event A, denoted E(Y|A), is the expectation of Y under the conditional probability distribution given A:

  4. Rule of Average Conditional Expectations • For any random variable Y with finite expectation and any discrete random variable X, • Another way of writing the above is

More Related