1k likes | 1.17k Views
Introduction. AAE 450 – Spring 2004 Project HOMER Humans Orbiting Mars for Exploration and Research. Brady Kalb. Homer Heavy Lift Launch Vehicle. 2 nd Stage. 3 rd Stage. 57 m. 89 m. 44 m. Chris Ulrich , Chris Krukowski, Frank Hankins, Nikolaus Ladisch, Marina Mazur, Matt Maier.
E N D
Introduction AAE 450 – Spring 2004 Project HOMER Humans Orbiting Mars for Exploration and Research Brady Kalb Spring 2004 AAE450: Slide 1
Homer Heavy Lift Launch Vehicle 2nd Stage 3rd Stage 57 m 89 m 44 m Chris Ulrich, Chris Krukowski, Frank Hankins, Nikolaus Ladisch, Marina Mazur, Matt Maier Spring 2004 AAE450: Slide 2
HOMER LAUNCH VEHICLES HEAVY LIFT LAUNCH VEHICLE MASS BREAKDOWN Chris Ulrich, Chris Krukowski, Frank Hankins, Nikolaus Ladisch, Marina Mazur, Matt Maier Spring 2004 AAE450: Slide 3
CRV: Aerodynamic Stability Equation used in Trim line calculations: Aft (0) Spring 2004 AAE450: Slide 4 Rebecca Karnes
Rocket Structure • Launch Escape Motor • Pitch Control Motor • Tower Jettison Motor Launch Escape Tower Boost Protective Cover CRV: LES Sizing and Components Heather Dunn Spring 2004 AAE450: Slide 5
CRV: LES and Parachute Mass Launch Escape System Parachute Recovery System Heather Dunn Spring 2004 AAE450: Slide 6
Transport Vehicle Thrusting Mode after leaving Earth Devin Fitting, Dave Goedtel, Ben Toleman, Debanik Barua Spring 2004 AAE450: Slide 7
Transport Vehicle Storage view with airlock Devin Fitting, Dave Goedtel, Ben Toleman, Debanik Barua Spring 2004 AAE450: Slide 8
Transport Vehicle • Aerocapture Mode • Radiators retracted • Comm. Antenna Retracted • Vehicle collapsed Spring 2004 AAE450: Slide 9
Human Factor Mass Summary Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 10
Major Components Contained on the First Floor Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 11
Major Components Contained on the Second Floor Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 12
Major Components Contained on the Third Floor Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 13
Stored Components Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 14
Stored Components (Continued) Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 15
Stored Components Major Components Contained on the Fourth Floor Other Components Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 16
Air Subsystem Air Subsystem Design Values Atmosphere Composition and Pressure Air Subsystem Breakdown Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 17
Waste & Water Subsystem Water Mass for Mission WCS Specifications Daily Water Budget WPA Specifications Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 18
Artificial Gravity Gravity Gradient relative to 9.81 m/s2 Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 19
Volume Comparisons Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 20
10.084 m 2.58 m 10.5 m Habitat Module Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 21
Doors for CRV/Landers 10.084 m 10.5 m Storage Module Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 22
Effect of Thickness on Hoop Stress Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 23
Buckling Analysis Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 24
2.00 m 1.00 m R 0.30 m R 0.20 m 2.58 m 0.10 m 0.02 m R 0.20 m 0.75 m 1.50 m Column Configuration and FEM Analysis Max. von Mises Stress = 9.65×107 N/m2 Max. Principal Stress = 9.74×107 N/m2 Max. Displacement = 1.36×10-4 m Mass = 916.34 kg Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 25
Brace Configuration and FEM Analysis Max. von Mises Stress = 3.61×107 N/m2 Max. Principal Stress = 3.72×107 N/m2 Max. Displacement = 6.25×10-4 m Mass = 65.80 kg Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 26
Floor Configuration and FEM Analysis Max. von Mises Stress = 9.52×106 N/m2 Max. Principal Stress = 9.38×106 N/m2 Max. Displacement = 1.40×10-4 m Mass = 9.76×103 kg Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 27
CRV and Lander Holders Configuration Lander Holder CRV Holder Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 28
CRV and Lander Holders Analysis Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 29
Margin of Safety (MS) • Surface Crack Propagation • Assumptions: - Leak before break - a/c = 1.0 - a/t = 1.0 - a/b = 0.1 Surface Crack Propagation (Fig 8.3fromFundamentals of Structural Integrity byAlten F. Grandt) K = 36.26 MPa-m1/2 for Al 2219-T851 Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 30
Hoytube Design • 6 Hoytubes within the bundle • 5 primary lines per Hoytube • Most of load bearing capability • 8 Secondary lines per Hoytube • Initially slack, load bearing in case of damaged primary lines • High survivability • 100 % > 70 years Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 31
Component Masses Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 32
Layering System Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 33
4.38 m Stringer 9.31 m Ring/Frame Rigid Body Model Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 34
Power Subsystems Breakdown (Primary Power) Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 35
Power Cable Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 36
Power Cable Mass Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 37
Fuel Cell System Mass Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 38
Power Subsystems Breakdown (Secondary Power) Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 39
Breakdown of Fuel Cell System(Duration and Power Supplied) Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 40
Mass Breakdown of Power Distribution System Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 41
Energy Balance at Outter Insulation Surface: Energy Balance at Inner Insulation Surface: Melanie Silosky Robert Manning , Matthew Branson, Lucia Capdevila, Alessandro Ianniello, Power Loss in Tether Spring 2004 AAE450: Slide 42
T1 = 130.8 oC H2O vapor 380 kW From Engines 380 kW HX T2 = 130.8 oC P H2O liquid T2 = 4.4 oC P 33 kW HX T1 = 83 oC T2 = 4.4 oC P 33 kW HX T1 = 83 oC Cooling Loop Design • Propulsion Module • Two phase H2O loop • Mass flow rate = 0.04 kg/s • Pressure = 2 atm • Habitat Module • Single phase liquid NH3 loop • Mass flow rate = 0.08 kg/s • Supply temperature = 4.4 oC Spring 2004 AAE450: Slide 43
3.81 mm heat pipe 0.58 mm fin 10 cm Panel Design • Panel Design • Beryllium fins (k = 220 W/m-K) • Z-93 white paint coating (e = 0.92) Spring 2004 AAE450: Slide 44
Radiator Mass Breakdown Spring 2004 AAE450: Slide 45
Timeline • Early November 2009 – 500 km circular orbit at 23.45º inclination • Late November 2009 – Finite burn for trans-Mars injection, Δv = 4.50 km/s • Mid January 2010 – Tether deployed, spin-up maneuver, ω = 5 rpm • Early June 2010 – Spin-down maneuver, EVA performed, prepare for aerocapture • Mid June 2010 – Mars atmospheric probes released • Mid July 2010 – Aerocapture into 14 day elliptic orbit around Mars, e = 0.97 • Late July 2010 – First Mars Lander released, landing at 1.98ºS, 353.82ºE • Early August 2010 – Second Mars Lander released, landing at 8.92ºN, 205.21ºW • Mid August 2010 – Apo-twist maneuver • Mid September 2010 – Spin-up maneuver, simulate Mars gravity Allison Bahnsen, Daniel Grebow, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 46
Mars Aerocapture: Capturing the Corridor • Vehicle Characteristics Unchanged • Entry Corridor Density Uncertainties • % Cases Captured: 54 Total Nominal Flight Path Angles [LU, LD] [-9.43º, -8.1065º] Ellipsled Image taken from R. Whitley and C. Cerimele Spring 2004 AAE450: Slide 47 Ryan Whitley
Spin-up/Spin-down Specifics Allison Bahnsen, Daniel Grebow, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 48
Hall Effect Thruster Placement Allison Bahnsen, Daniel Grebow, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 49
Trans-Earth Injection: Finite Burn • Early November 2009 – Initial Earth parking orbit. • Late November 2009 – Trans-Mars injection, 1.34 hour burn time. – Impulsive: ΔV = 3.55 km/s. – Finite: ΔV = 4.50 km/s. Daniel Grebow, Allison Bahnsen, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 50