1 / 19

Tessellations

Tessellations. By Kiri Bekkers & Katrina Howat. What do my learner’s already know... Yr 9. Declarative Knowledge: Students will know... Procedural Knowledge: Students will be able to. Declarative Knowledge & Procedural Knowledge.

uriel-oneil
Download Presentation

Tessellations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tessellations By KiriBekkers & Katrina Howat

  2. What do my learner’s already know... Yr 9 Declarative Knowledge: Students will know...Procedural Knowledge: Students will be able to...

  3. Declarative Knowledge & Procedural Knowledge Declarative Knowledge: Students will know...How to identify a polygonParts of a polygon; vertices, edges, degreesWhat a tessellation isThe difference between regular and semi-regular tessellationsFunctions of transformational geometry - Flip (reflections), Slide (translation) & Turn (rotation)How to use functions of transformational geometry to manipulate shapes How to identify interior & exterior angles Angle properties for straight lines, equilateral triangles and other polygons How to identify a 2D shape They are working with an Euclidean Plane Procedural Knowledge: Students will be able to...Separate geometric shapes into categoriesManipulate geometric shapes into regular tessellations on an Euclidean Plane Create regular & semi-regular tessellations Calculate interior & exterior angles Calculate the area of a triangle & rectangle

  4. Tessellations Tessellation:Has rotational symmetry where the polygons do not have any gaps or overlapping Regular tessellation: A pattern made by repeating a regular polygon. (only 3 polygons will form a regular tessellation) Semi-regular tessellation: Is a combination of two or more regular polygons. Demi-regular tessellation: Is a combination or regular and semi-regular. Non-regular tessellation: (Abstract) Tessellations that do not use regular polygons.

  5. Transformational Geometry • Flip, Slide & Turn • Axis of symmetry • Shape • Polygons • 2D & 3D Tessellations Geometric Reasoning Location & Transformation

  6. Regular Tessellations A regular tessellation can be created by repeating a single regular polygon...

  7. Regular Tessellations A regular tessellation can be created by repeating a single regular polygon... These are the only 3 regular polygons which will form a regular tessellation...

  8. Axis of Symmetry Axis of Symmetry is a line that divides the figure into two symmetrical parts in such a way that the figure on one side is the mirror image of the figure on the other side 1 2 3 1 2 4 3

  9. Axis of Symmetry Axis of Symmetry is a line that divides the figure into two symmetrical parts in such a way that the figure on one side is the mirror image of the figure on the other side 1 2 1 2 3 4 3 1 5 2 4 6 3

  10. Where the vertices meet...

  11. Where the vertices meet... Sum of internal angles where the vertices meet must equal 360* 90* + 90* + 90* + 90* = 360* 120* + 120* + 120* = 360* 60* + 60* + 60* + 60* + 60* + 60* = 360*

  12. Semi-Regular Tessellations A semi-regular tessellation is created using a combination of regular polygons... And the pattern at each vertex is the same...

  13. Where the vertices meet... Sum of internal angles where the vertices meet must equal 360* Semi-Regular Tessellations All these 2D tessellations are on an Euclidean Plane – we are tiling the shapes across a plane

  14. Calculating interior anglesformula: (180(n-2)/n)wheren = number of sides We use 180* in this equation because that is the angle of a straight line For a hexagon: 6 sides (180(n-2)/n) (180(6-2)/6) 180x4/6 180x4 = 720/6 (720* is the sum of all the interior angles) 720/6 = 120 Interior angles = 120* each 120* 120* + 120* + 120* + 120* + 120* = 720* 90* 90* 180*

  15. Where the vertices meet... Sum of internal angles where the vertices meet must equal 360* Semi-Regular Tessellations 120* 120* + 120* = ? 240* What are the angles of the red triangles? 360* - 240* = 80* 80* / 2 = 40* per triangle (both equal degrees)

  16. Creating “Escher” style tessellations... Some images for inspiration...

  17. Tessellations around us...

  18. Tessellations around us...

  19. Extension Hyperbolic Planes… Extension - Working with 3D shapes… The Hyperbolic Plane/Geometry – working larger than 180* & 360* Circular designs like Escher’s uses 450* - a circle and a half... Working with 2D shapes Example by M.C. Escher – “Circle Limit III”

More Related