420 likes | 558 Views
Chapter 8. Sequential Logic Design Practices. Preface. 8.1 Sequential-Circuit Documentation Standards. 1.State-Machine Descriptions. ■ State Table. ■ State Diagram. ■ Transition Lists. 2.Timming Diagram and Specifications. ■ The Cause-and-effect Delays between Critical Signals.
E N D
Chapter 8 Sequential Logic Design Practices
8.1 Sequential-Circuit Documentation Standards 1.State-Machine Descriptions ■State Table ■State Diagram ■Transition Lists 2.Timming Diagram and Specifications ■The Cause-and-effect Delays between Critical Signals ■A Detailed of Propagation Delays ADE7754 Serial Write Timing
8.2 Latches and Flip-Flops (SSI Latches and Flip-Flops) Two Independent Positive Edge-Triggered D Flip-Flops with Preset and Clear. 74×74 Two Independent Positive Edge-Triggered Flip-Flops with Preset and Clear. 74×109 Two Independent Negative Edge-Triggered J-K Flip-Flops with Preset and Clear. 74×112 74×375 Four D Latches. Two Latches with a Common C Control. Four Positive Edge-Triggered D Flip-Flops with Invert Output. All Flip-Flops with a Common Clock and Clear. 4bit Register 74×175 Six Positive Edge-Triggered D Flip-Flops with a Common Clock and Clear. No Invert Output. 6bit Register 74×174 Eight Positive Edge-Triggered D Flip-Flops with a Common Clock. No Invert Output. Three-State Output. 8bit Register 74×374 Eight D Latches with a Common C Control. No Invert Output. Three-State Output. 8bit Latch 74×373 Eight Positive Edge-Triggered D Flip-Flops with a Common Clock and Clear. No Invert Output. 8bit Register 74×273 Eight Positive Edge-Triggered D Flip-Flops with a Common Clock and EN. No Invert Output. 8bit Register 74×377
SW_L DSW +5V SW_L DSW SW +5V SW_L S Q R Q Q QL DSW Switch Debouncing
Q Q T Q0 Q1 Q2 Q3 Q Q Q Q Q Q Q Q CLK T T T T 8.3 Counters S2 S1 Modulo-m Counter S3 Divide-by-m Counter Sm S4 S5 T Flip-Flop 1. Ripple Counters Divide-by-2 Counter Asynchronous Counter
CLK Q0 Q1 Q2 Q3 Q0 CLK Q1 Q Q Q Q Q Q Q Q T T T T Q2 Timming Diagram: tpLH tpHL
2. Synchronous Counters Serial Enable Parallel Enable
CLK Q0 Q0 Q1 Q2 Q2 Serial Enable: If CLK is very fast Pulse be Lose
Synchronous 4-bit Binary Counter 74×163 Input: Clock CLR_L (Synchronous Clear) LD_L (Load) ENP (Enable) ENT (Preset) A,B,C,D (Count Output) Output: QA,QB,QC,QD RCO (Ripple Carry Out)
RCO 0 0 74×163 0 0 0 0 0 0 State Table 0 0 0 0 0 0 0 0 0 1
74×163 Logic Diagram
Free-Runing Mode Timming Diagram:
Using 74×163 to Design Modulo-M Counter ① Preset Synchronously Counting Seuence Table QD QC QB QA N 0 0 1 0 1 0 1 1 0 1 0 1 1 1 2 1 1 0 0 0 0 3 1 1 0 0 1 4 0 1 0 1 0 5 1 0 1 1 6 1 1 0 0 7 1 1 0 1 8 Modulo-11 Counter 1 1 1 0 9 1 1 1 1 10 RCO=1 LD=0
CLK 1 Counting Sequence Table QD QC QB QA N 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 0 1 1 3 0 0 1 0 0 4 0 0 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 Modulo-11 Counter 1 0 0 1 9 1 0 1 0 10 QDQB=1 LD=0
Z CLK 1 Using 74×163 to Design Modulo-24 Counter Need Two 74×163s Last State: 00011000 Initial State: 00000001 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
CLK 1 ② Clear Feedback Counting Sequence Table QD QC QB QA N 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 10 QDQB=1 CLR=0
CLK 1 0 0 1 ③ Preset More Times Counting Sequence Table QD QC QB QA N Assume 0 0 0 0 0 0 1 0 0 1 0 1 0 1 2 0 1 1 0 3 0 1 1 1 4 1 0 0 0 5 1 1 0 0 6 1 1 0 1 7 1 1 1 0 8 1 1 1 1 9 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1
74×161 Up/Down Counter No Clear ENP ENT Low Active RCO Low Active Same Pinout as 74×163 Asynchronous Clear Input
Decoder with Glitch-Free Output Homework:8.13,8.42,8.46
8.4 Shift Registers Serial-In, Serial-Out Serial-In, Parallel-Out
1Q 2Q NQ Serial-In, Serial-Out Serial-In, Parallel-Out Parallel-In, Serial-Out Parallel-In, Parallel-Out
MSI Shift Registers Universal Serial-In, Parallel-Out Parallel-In, Serial-Out
Parallel/Serial Conversion 1 1 1 0
Serial/Parallel Conversion 0 0 0 0
Ring Counters Counting Sequence Table QD QC QB QA LIN 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 Single circulating 1 0000 0000 1111 1000 1111 0111 0100 0001 0011 1011 1110 0010 1001 0110 1101 0101 1010 1100
Counting Sequence Table QD QC QB QA LIN Four States FeedbackEquation 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 Single circulating 1 Self-Correcting
State Diagram 1101 1100 0000 1000 0110 0100 1111 0001 0011 0010 1001 0111 0101 1110 1010 1011
Counting Sequence Table QD QC QB QA LIN Four States FeedbackEquation 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 Single circulating 0 Self-Correcting
Johnson Counters Counting Sequence Table QD QC QB QA LIN 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 Eight States 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 Eight States 1 0 1 0 1 FeedbackEquation 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0
Counting Sequence Table QD QC QB QA LIN S0 0 0 0 0 1 0 d 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 Eight States 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 Self-Correcting 1 0 0 1 0 d 0 1 0 0 1 d 00 01 11 10 1 0 1 0 1 d 00 d d 0 0 1 1 0 1 0 d 01 0 1 1 0 1 d 0 d d d 1 0 1 1 0 d 11 0 0 0 d 0 1 0 1 0 d 10 d 1 0 d
(LFSR) Linear Feedback Shift-Register Counters Finite Fields Theory Ex.8-1 Modulo-7 System U=(0,1,2,3,4,5,6) Original Element:2 4+2=6 6+2=8 1 1+2=3 3+2=5 2+2=4 0+2=2 5+2=7 0 n-bit Shift-Register has 2n-1 Nonzero States! Maximum-Length Sequence Producing Random Numbers
X2 X1 X0 X3(LIN) 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 Seven Nonzero States 0 0 1 1 0 0 0 0 X2 X1 X0 Not Self-Correcting
X2 X1 X0 X3(LIN) X2 X1 X0 X3(LIN) 1 0 0 1 00 01 11 10 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 00 01 11 10 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 Homework:8.55
8.5 Iterative versus Sequential Circuits Serial Comparator Serial adder
8.6 Sequence Generator 0 CLK 1 Counter + Combinational Logic Maximum-Length Sequence Generator Ex.8-2 Produce 110001001110 Sequence ①Modulo-12 Counter + Combinational Logic Using Counter QD QC QB QA F 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 F 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 d
Using Shift Register 00 01 11 10 00 0 d 0 d QA QB QC QD LIN S0 F 01 0 0 d 0 S0 0 0 0 0 1 0 1 11 0 0 0 0 0 0 0 1 1 0 1 10 1 0 0 d 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 00 01 11 10 00 01 11 10 1 0 0 1 0 0 0 00 1 d 1 d 00 0 0 1 0 1 0 1 1 d 0 d 01 1 1 d 0 0 1 0 1 1 0 1 01 LIN 1 1 d 0 F 11 1 0 1 1 1 0 0 1 1 0 0 11 0 0 0 1 0 1 1 0 1 1 0 10 0 1 1 d 10 1 1 0 d 1 1 0 1 d d d
CLK 0 1 0 0 0 0 F 1 1 0 0 1 0 0100 1001 States Check Self-Correcting 1000 0001 1001 1010 0100 1001 1101 1010 0100
CLK 1 0 0 ②Maximum-Length Sequence Generator LIN(F) QA QB QC QD 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 F 0 1 0 0 1 F4 1 1 1 1 0 0 F3 0 0 1 1 1 0 F2 0 0 0 1 1 1 F1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 00 0 01 11 10 0 0 1 1 00 d 0 1 1 01 1 d 1 1 0 0000 0001 0101 1011 F States Check 1111 1110 11 1011 0 1010 0101 0 d 1 0101 1010 Self-Correcting 10 0 0 1 d 1010 0101