1 / 56

Nikolaj Blom Center for Biological Sequence Analysis BioCentrum-DTU

”Gene Finding in Eukaryotic Genomes” PhD course #27803 Spring 2003. Nikolaj Blom Center for Biological Sequence Analysis BioCentrum-DTU Technical University of Denmark nikob @cbs.dtu.dk. Human Genome Published HUGO: Nature, 15.feb.2001 Celera: Science, 16.feb.2001.

ursala
Download Presentation

Nikolaj Blom Center for Biological Sequence Analysis BioCentrum-DTU

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ”Gene Finding in Eukaryotic Genomes” PhD course #27803 Spring 2003 Nikolaj Blom Center for Biological Sequence Analysis BioCentrum-DTU Technical University of Denmark nikob@cbs.dtu.dk

  2. Human Genome Published HUGO: Nature, 15.feb.2001 Celera: Science, 16.feb.2001

  3. We Have the Human Genome Sequence...now what? • So, what is the problem? • Well... • We don’t know how many genes there are! • We don’t know where they are! • We don’t know what they do!

  4. The cellular machinery recognize genes without access to GenBank, SwissProt or computers – can we?

  5. Needles in Haystacks... • Only 2% of human genome is coding regions • Intron-exon structure of genes • Large introns (average 3365 bp ) • Small exons (average 145 bp) • Long genes (average 27 kb)

  6. AAGAGGTAATTAAAGCTAAATGAAGTTGTAAGAGTGGCCCTATCGCATAGGACTAGTGTCCCTATAAGAACACGAAGAAATCACCTTAGAAAGGCTGAGAAAGGGCTGCAGGGCAGTGGGAGTGCAGACTGAAAGATGCAGACCACTGGGCTTCTACTTCTGTTTCCATTTCTGATCCGGCCTGCATCTGCCTCCTTCCTGAACAGGCCAGAGAATTCATCTAAATAGCCTAAGCAGGCTGGGTGCTGTGGCTCACCTGTAATCCCAACACTTGGGAGGCCGAGGTGGGCAGATCACCTGAGGTCAGGAGTTCAAGGCTAGCCTAGCCAACATGACAAAACCCCATCTCTACTAAAAAAATACAAAAATTAGCCAGGCATAGTGGCGCCTATAGTTCCAGCTACTTGGGGGCTGAGGTAGGAAGATCGCTAGAGCCTGGGAGGTTAAGGCTGCGGTGAGCTGTGATTGTGCCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGCCTCAAAAATAAATAAATAAATAAATAAATAAAAATAAGAGTGCTTGGCAGCTTGATCAAGCTATGCCAGGAACCCATCTCTCAAGCAGCAGCTCTTCTCCTGTGCCATTGTCAGCTTTGTCCTGTCTGAGTCCATGGGACTCTTCTGTTTGATGGTGGTCTTCCTCATCCTCTTCATCATGTGAAGCTCCATGGAGATCACCTACCCATACCTGCTTCTGTGACCTCATGCCATTCCTGGTGTTGGAATGTGCCAAGGTTTGCCATTAAACACACATTTCTCATTTCATAATTTCATATATATTATATATATGTGTGTGTGTGTGTGTTTATATATGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATATATATATATATATATATATATATATATATATATATATAAAATATATAGGAAGAGGCACCAGAGAGCTCTCTGCATAGTCACAGAGGAAAGGTCATGTGAGGACAGCCAGAAGGCAGATGTCACAAGCCTCACCAGCAACCTACCATACCCTGCTTGTACCTCCATCCTGGAAGTCCAGCTTCTAAAATTAGAAGAAAATAGTCGGGTGTGGTGGCTCGCACCTATAATCCCAGCACTTTGGGAGGCTGATGTGGGAGGATCATTTGAGGTCAAGAGTTTGAAACCAGCCTAGGCAACATAGGGAGACCCTGTCTTTAAAAAAAATTTTTTTTTGTTTTAATTAGCTGGGTGTGATGGTGCACACCTGAGTCCTAGCTACTTGGGAGGCTGAGGTAGGAGGATCCCCTGAGCCCAGGGAAGTGGAGGCTGCAGTGAGCCATGATCACACCACTGCAATACAGCCTGGGTGACAGAGCAAGACCTTATCTCAAAATAAACAAACAAACAAAAAAGATGACAAAATAAATGTCTGTCGTTTAAGTCACCCATTCTGTGATATCTTGTTACGGCAGCCTGAACTGACCAATACACTTCCTCACCCAGTTTAAATTCCATGCTCAATCATAATCAGCCATTGCAATTACCCTCAACTGTATTATCAACCCTCAATTTGTATTAGTTGCTTGGCAAAACCCAAACCCTTGTGAAATCCAGTTCTTCTATATCTACATCGATGCTGCCGAATATGGCTGAAGAAAAGCAACTGTGTTGACTGGACTGCTTTAAATTCATGACCACTTACCTCAAGTGGGCACTTAACTTCCTGGCAATTATTCTACATTTTTCTAGTCCATTAACTCTCCTCCTCTCTGAGTTAATTATTTCACAGCTTTTCCTCCCTCTTTATACATGTTCCATCCTAACTCTCTGCTGATGACCTTGTTTCTTATTTCACTAATGGAGGCCACCAGGAGAGAACTCCCACAGCCATCAAATTCACCAAGCCAACAGCATCCTTACACAAATCCTCTGCCTTCTCTCTGGGCTGGCTGTGCCCTCTCTTTGCTCCTGCAATTTCCCTAACTCTCCTATACTGTTGTTATTCACTCTCCAGTGGATAATCACCATCAGGATGCAAAGATGCTGTACTAGCTTCTGAACTCTCCAAAAACCCAGGAAACAAAAAGGCAAAGGCTAAGCTTTTTCTTATTCCCCCTTCCAGCTATTGTACTGTTTCTCTGCTTTTAATTTATTTTTATTTATTTATTTATTTATTTATTTATTTATTTTTGAGATGGAGCTTCACTCTTGTTGCCCAGGCTGGAGCGCAATGGCGCGATCTCAGCTCACCGCAACCTCTACTTCCCGAATTCAAGTGATTGTCCTGCCTCAGCCTCCCGAGTAGCCGGGATTACAGGCATGCGCCACCACGCCTGGCTAATTTTGTACTTTTAGTAGAGACGGGGTTTCTCCATGTTGCTCAGCCTGGTCACAAACTCCCGATCTCAGGTGATCTGCCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCACGCCCCACCGTCTCTGTTCTCTTTTAAAGCACAATCCCTCAACACAAGTGTCTATACTCAGCGTCTCCACTTTCCCTCCATCTGGTCTTCCCAGTGCCCCCTTGTCAGGTTTTCACCCCATGCTCCTCCAGGGCTAGTCTGCTCTTGCTTCCCGTCTTACTGGAAGACCAGCAGCATTTGACAGAGTTGGTCACTCTCTCCTCCTTGGACACCTTTTCTTCACTTGGTTTCCAGAACAGCATTATCTCCTGCTTATTGTCTTCCTCAGTCTACCTCAGTGAAAAGCTTTACTGGTTCCTCCACATCTCCCAGACCTCCAGTAATAACAGGAATGTACCATGCCATTGCTCTCTCTCTCTCCTTTTTTTTTTTTTTTTTTTTTTTTTGTTGAGACAGAGTCTCAATTTTATCACCCAGACTGAAGCACAATGGCATGATCATAGCTCATTGCAGTCTCGAACTCGTGGGCTCAAGCAATCCTCCCACCTCAGCCTCCTGAATAGCTGGGACTACAAGCAACACCACCATGCCCAGCTAACTTTCTATTTTTTATTTTTATTTTTTGTAGAGATGAGGTTTTACTATGTTGCCTAGGCTAGTCTTGAACTCCTGGGCCCAAATGATCCTCCCACCTTGGTCTCCCAAAGTGCTGGGATTATAGGCGTGAGCCACCGTGTCCAACTTCTCTTTCTTAATGGAATTTAGGCAAAAGTTATTACTCATGGCCTTGGAATGCTCTTTCCTCAGATAGCCACATGGCTCACCATTACTTCCTTCCAGCTTTCTTCAAAGATCCACTTCTCAGTGAAGCTTTGTCCTGACCACCCAGCTGAAAATTGCAATCCTCTTCTGTCTACCATGTACATACTCTCTATTTGCTTTCCTTCCTTTATTTCTCTCTGTAGGTGTGACCTAACATAACATATAATTTACTTCTGTACCTTGTTTGCTTTCTGTCTTCCCCTTTAGAACATAAGCTCCATGAGGGAAGGCGTTTTTGCCTGCTTTAGTCACTTTATCTCCAGCAACTACAACTATATGTATATATACACACACATATATATACACACACATATATATACACACACATATATATATACATATATATATATAGTAGGCACTCAATAAACATTCACTGAATGAATGAACAGTAATGCTCACTTGCCCATAAATACAAGTACCTCATCTTTTACCACAAAGGGTATTTGTAAATATTTAGGTTGTTTCTACCCAGATTATGGCTTGGTAATTCTTTTTTTTTTTTTCTAATTTTTATTTTTTTTCTAGGGACAGGGTCTCACTATGTTGCCCAGGATGGTCTTGAACTCCTGGGCTCAAGCATTCTGCCTGCCTTGGCCTCCTAAAGTGCTGAGATTACAGGCATGAGCCACCGTGCCTGCCTTCATGTATGTTTTTAGAACACAGAGAAAATGTGTTCTAAATGTGCTCATTGCTCAGCAATGAGCAAAGGCTTATGCAGTCACCACCAATCAAAAACTTTTTTTTTTTTTTTTGAGACAAGATCTTGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCAGGATCATAGCAAGCTGCAGTCTTGACCTCATAGGCCTAAATCATCCTCCCACCTCAGCCTCACAAGTAGCTAAGACCACAGGTACAAGCCACCGTATCTAGCTAACTTTCAAAATTTTTTGAATTTTTAAATTTAAAAATTTTGAGGCCAGGCTGGCCTCAAACTCCTGAGCTCAAGCAATCCTCCCACCTTGGCTTCCCAAAGTGCTGGGATTATAGGCGTGAGCAACTGTACCTGGCAAAAACTTTTTAAGAGCTTCGCTTCCAGGATTAGGCAACTTTAACCTTCAACAGTGATCATAACCCTTAGTTTTCAGATCCGATTAAGGGAAATGTGTAATGTCTTACTGACACACTAATCCCATCACTGCTCACACCACCCACAATTAGCTGAGAAGAGGTAATTAAAGCTAAATGAAGTTGTAAGAGTGGCCCTATCGCATAGGACTAGTGTCCCTATAAGAACACGAAGAAATCACCTTAGAAAGGCTGAGAAAGGGCTGCAGGGCAGTGGGAGTGCAGACTGAAAGATGCAGACCACTGGGCTTCTACTTCTGTTTCCATTTCTGATCCGGCCTGCATCTGCCTCCTTCCTGAACAGGCCAGAGAATTCATCTAAATAGCCTAAGCAGGCTGGGTGCTGTGGCTCACCTGTAATCCCAACACTTGGGAGGCCGAGGTGGGCAGATCACCTGAGGTCAGGAGTTCAAGGCTAGCCTAGCCAACATGACAAAACCCCATCTCTACTAAAAAAATACAAAAATTAGCCAGGCATAGTGGCGCCTATAGTTCCAGCTACTTGGGGGCTGAGGTAGGAAGATCGCTAGAGCCTGGGAGGTTAAGGCTGCGGTGAGCTGTGATTGTGCCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGCCTCAAAAATAAATAAATAAATAAATAAATAAAAATAAGAGTGCTTGGCAGCTTGATCAAGCTATGCCAGGAACCCATCTCTCAAGCAGCAGCTCTTCTCCTGTGCCATTGTCAGCTTTGTCCTGTCTGAGTCCATGGGACTCTTCTGTTTGATGGTGGTCTTCCTCATCCTCTTCATCATGTGAAGCTCCATGGAGATCACCTACCCATACCTGCTTCTGTGACCTCATGCCATTCCTGGTGTTGGAATGTGCCAAGGTTTGCCATTAAACACACATTTCTCATTTCATAATTTCATATATATTATATATATGTGTGTGTGTGTGTGTTTATATATGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATATATATATATATATATATATATATATATATATATATATAAAATATATAGGAAGAGGCACCAGAGAGCTCTCTGCATAGTCACAGAGGAAAGGTCATGTGAGGACAGCCAGAAGGCAGATGTCACAAGCCTCACCAGCAACCTACCATACCCTGCTTGTACCTCCATCCTGGAAGTCCAGCTTCTAAAATTAGAAGAAAATAGTCGGGTGTGGTGGCTCGCACCTATAATCCCAGCACTTTGGGAGGCTGATGTGGGAGGATCATTTGAGGTCAAGAGTTTGAAACCAGCCTAGGCAACATAGGGAGACCCTGTCTTTAAAAAAAATTTTTTTTTGTTTTAATTAGCTGGGTGTGATGGTGCACACCTGAGTCCTAGCTACTTGGGAGGCTGAGGTAGGAGGATCCCCTGAGCCCAGGGAAGTGGAGGCTGCAGTGAGCCATGATCACACCACTGCAATACAGCCTGGGTGACAGAGCAAGACCTTATCTCAAAATAAACAAACAAACAAAAAAGATGACAAAATAAATGTCTGTCGTTTAAGTCACCCATTCTGTGATATCTTGTTACGGCAGCCTGAACTGACCAATACACTTCCTCACCCAGTTTAAATTCCATGCTCAATCATAATCAGCCATTGCAATTACCCTCAACTGTATTATCAACCCTCAATTTGTATTAGTTGCTTGGCAAAACCCAAACCCTTGTGAAATCCAGTTCTTCTATATCTACATCGATGCTGCCGAATATGGCTGAAGAAAAGCAACTGTGTTGACTGGACTGCTTTAAATTCATGACCACTTACCTCAAGTGGGCACTTAACTTCCTGGCAATTATTCTACATTTTTCTAGTCCATTAACTCTCCTCCTCTCTGAGTTAATTATTTCACAGCTTTTCCTCCCTCTTTATACATGTTCCATCCTAACTCTCTGCTGATGACCTTGTTTCTTATTTCACTAATGGAGGCCACCAGGAGAGAACTCCCACAGCCATCAAATTCACCAAGCCAACAGCATCCTTACACAAATCCTCTGCCTTCTCTCTGGGCTGGCTGTGCCCTCTCTTTGCTCCTGCAATTTCCCTAACTCTCCTATACTGTTGTTATTCACTCTCCAGTGGATAATCACCATCAGGATGCAAAGATGCTGTACTAGCTTCTGAACTCTCCAAAAACCCAGGAAACAAAAAGGCAAAGGCTAAGCTTTTTCTTATTCCCCCTTCCAGCTATTGTACTGTTTCTCTGCTTTTAATTTATTTTTATTTATTTATTTATTTATTTATTTATTTATTTTTGAGATGGAGCTTCACTCTTGTTGCCCAGGCTGGAGCGCAATGGCGCGATCTCAGCTCACCGCAACCTCTACTTCCCGAATTCAAGTGATTGTCCTGCCTCAGCCTCCCGAGTAGCCGGGATTACAGGCATGCGCCACCACGCCTGGCTAATTTTGTACTTTTAGTAGAGACGGGGTTTCTCCATGTTGCTCAGCCTGGTCACAAACTCCCGATCTCAGGTGATCTGCCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCACGCCCCACCGTCTCTGTTCTCTTTTAAAGCACAATCCCTCAACACAAGTGTCTATACTCAGCGTCTCCACTTTCCCTCCATCTGGTCTTCCCAGTGCCCCCTTGTCAGGTTTTCACCCCATGCTCCTCCAGGGCTAGTCTGCTCTTGCTTCCCGTCTTACTGGAAGACCAGCAGCATTTGACAGAGTTGGTCACTCTCTCCTCCTTGGACACCTTTTCTTCACTTGGTTTCCAGAACAGCATTATCTCCTGCTTATTGTCTTCCTCAGTCTACCTCAGTGAAAAGCTTTACTGGTTCCTCCACATCTCCCAGACCTCCAGTAATAACAGGAATGTACCATGCCATTGCTCTCTCTCTCTCCTTTTTTTTTTTTTTTTTTTTTTTTTGTTGAGACAGAGTCTCAATTTTATCACCCAGACTGAAGCACAATGGCATGATCATAGCTCATTGCAGTCTCGAACTCGTGGGCTCAAGCAATCCTCCCACCTCAGCCTCCTGAATAGCTGGGACTACAAGCAACACCACCATGCCCAGCTAACTTTCTATTTTTTATTTTTATTTTTTGTAGAGATGAGGTTTTACTATGTTGCCTAGGCTAGTCTTGAACTCCTGGGCCCAAATGATCCTCCCACCTTGGTCTCCCAAAGTGCTGGGATTATAGGCGTGAGCCACCGTGTCCAACTTCTCTTTCTTAATGGAATTTAGGCAAAAGTTATTACTCATGGCCTTGGAATGCTCTTTCCTCAGATAGCCACATGGCTCACCATTACTTCCTTCCAGCTTTCTTCAAAGATCCACTTCTCAGTGAAGCTTTGTCCTGACCACCCAGCTGAAAATTGCAATCCTCTTCTGTCTACCATGTACATACTCTCTATTTGCTTTCCTTCCTTTATTTCTCTCTGTAGGTGTGACCTAACATAACATATAATTTACTTCTGTACCTTGTTTGCTTTCTGTCTTCCCCTTTAGAACATAAGCTCCATGAGGGAAGGCGTTTTTGCCTGCTTTAGTCACTTTATCTCCAGCAACTACAACTATATGTATATATACACACACATATATATACACACACATATATATACACACACATATATATATACATATATATATATAGTAGGCACTCAATAAACATTCACTGAATGAATGAACAGTAATGCTCACTTGCCCATAAATACAAGTACCTCATCTTTTACCACAAAGGGTATTTGTAAATATTTAGGTTGTTTCTACCCAGATTATGGCTTGGTAATTCTTTTTTTTTTTTTCTAATTTTTATTTTTTTTCTAGGGACAGGGTCTCACTATGTTGCCCAGGATGGTCTTGAACTCCTGGGCTCAAGCATTCTGCCTGCCTTGGCCTCCTAAAGTGCTGAGATTACAGGCATGAGCCACCGTGCCTGCCTTCATGTATGTTTTTAGAACACAGAGAAAATGTGTTCTAAATGTGCTCATTGCTCAGCAATGAGCAAAGGCTTATGCAGTCACCACCAATCAAAAACTTTTTTTTTTTTTTTTGAGACAAGATCTTGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCAGGATCATAGCAAGCTGCAGTCTTGACCTCATAGGCCTAAATCATCCTCCCACCTCAGCCTCACAAGTAGCTAAGACCACAGGTACAAGCCACCGTATCTAGCTAACTTTCAAAATTTTTTGAATTTTTAAATTTAAAAATTTTGAGGCCAGGCTGGCCTCAAACTCCTGAGCTCAAGCAATCCTCCCACCTTGGCTTCCCAAAGTGCTGGGATTATAGGCGTGAGCAACTGTACCTGGCAAAAACTTTTTAAGAGCTTCGCTTCCAGGATTAGGCAACTTTAACCTTCAACAGTGATCATAACCCTTAGTTTTCAGATCCGATTAAGGGAAATGTGTAATGTCTTACTGACACACTAATCCCATCACTGCTCACACCACCCACAATTAGCTGAG

  7. AAGAGGTAATTAAAGCTAAATGAAGTTGTAAGAGTGGCCCTATCGCATAGGACTAGTGTCCCTATAAGAACACGAAGAAATCACCTTAGAAAGGCTGAGAAAGGGCTGCAGGGCAGTGGGAGTGCAGACTGAAAGATGCAGACCACTGGGCTTCTACTTCTGTTTCCATTTCTGATCCGGCCTGCATCTGCCTCCTTCCTGAACAGGCCAGAGAATTCATCTAAATAGCCTAAGCAGGCTGGGTGCTGTGGCTCACCTGTAATCCCAACACTTGGGAGGCCGAGGTGGGCAGATCACCTGAGGTCAGGAGTTCAAGGCTAGCCTAGCCAACATGACAAAACCCCATCTCTACTAAAAAAATACAAAAATTAGCCAGGCATAGTGGCGCCTATAGTTCCAGCTACTTGGGGGCTGAGGTAGGAAGATCGCTAGAGCCTGGGAGGTTAAGGCTGCGGTGAGCTGTGATTGTGCCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGCCTCAAAAATAAATAAATAAATAAATAAATAAAAATAAGAGTGCTTGGCAGCTTGATCAAGCTATGCCAGGAACCCATCTCTCAAGCAGCAGCTCTTCTCCTGTGCCATTGTCAGCTTTGTCCTGTCTGAGTCCATGGGACTCTTCTGTTTGATGGTGGTCTTCCTCATCCTCTTCATCATGTGAAGCTCCATGGAGATCACCTACCCATACCTGCTTCTGTGACCTCATGCCATTCCTGGTGTTGGAATGTGCCAAGGTTTGCCATTAAACACACATTTCTCATTTCATAATTTCATATATATTATATATATGTGTGTGTGTGTGTGTTTATATATGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATATATATATATATATATATATATATATATATATATATATAAAATATATAGGAAGAGGCACCAGAGAGCTCTCTGCATAGTCACAGAGGAAAGGTCATGTGAGGACAGCCAGAAGGCAGATGTCACAAGCCTCACCAGCAACCTACCATACCCTGCTTGTACCTCCATCCTGGAAGTCCAGCTTCTAAAATTAGAAGAAAATAGTCGGGTGTGGTGGCTCGCACCTATAATCCCAGCACTTTGGGAGGCTGATGTGGGAGGATCATTTGAGGTCAAGAGTTTGAAACCAGCCTAGGCAACATAGGGAGACCCTGTCTTTAAAAAAAATTTTTTTTTGTTTTAATTAGCTGGGTGTGATGGTGCACACCTGAGTCCTAGCTACTTGGGAGGCTGAGGTAGGAGGATCCCCTGAGCCCAGGGAAGTGGAGGCTGCAGTGAGCCATGATCACACCACTGCAATACAGCCTGGGTGACAGAGCAAGACCTTATCTCAAAATAAACAAACAAACAAAAAAGATGACAAAATAAATGTCTGTCGTTTAAGTCACCCATTCTGTGATATCTTGTTACGGCAGCCTGAACTGACCAATACACTTCCTCACCCAGTTTAAATTCCATGCTCAATCATAATCAGCCATTGCAATTACCCTCAACTGTATTATCAACCCTCAATTTGTATTAGTTGCTTGGCAAAACCCAAACCCTTGTGAAATCCAGTTCTTCTATATCTACATCGATGCTGCCGAATATGGCTGAAGAAAAGCAACTGTGTTGACTGGACTGCTTTAAATTCATGACCACTTACCTCAAGTGGGCACTTAACTTCCTGGCAATTATTCTACATTTTTCTAGTCCATTAACTCTCCTCCTCTCTGAGTTAATTATTTCACAGCTTTTCCTCCCTCTTTATACATGTTCCATCCTAACTCTCTGCTGATGACCTTGTTTCTTATTTCACTAATGGAGGCCACCAGGAGAGAACTCCCACAGCCATCAAATTCACCAAGCCAACAGCATCCTTACACAAATCCTCTGCCTTCTCTCTGGGCTGGCTGTGCCCTCTCTTTGCTCCTGCAATTTCCCTAACTCTCCTATACTGTTGTTATTCACTCTCCAGTGGATAATCACCATCAGGATGCAAAGATGCTGTACTAGCTTCTGAACTCTCCAAAAACCCAGGAAACAAAAAGGCAAAGGCTAAGCTTTTTCTTATTCCCCCTTCCAGCTATTGTACTGTTTCTCTGCTTTTAATTTATTTTTATTTATTTATTTATTTATTTATTTATTTATTTTTGAGATGGAGCTTCACTCTTGTTGCCCAGGCTGGAGCGCAATGGCGCGATCTCAGCTCACCGCAACCTCTACTTCCCGAATTCAAGTGATTGTCCTGCCTCAGCCTCCCGAGTAGCCGGGATTACAGGCATGCGCCACCACGCCTGGCTAATTTTGTACTTTTAGTAGAGACGGGGTTTCTCCATGTTGCTCAGCCTGGTCACAAACTCCCGATCTCAGGTGATCTGCCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCACGCCCCACCGTCTCTGTTCTCTTTTAAAGCACAATCCCTCAACACAAGTGTCTATACTCAGCGTCTCCACTTTCCCTCCATCTGGTCTTCCCAGTGCCCCCTTGTCAGGTTTTCACCCCATGCTCCTCCAGGGCTAGTCTGCTCTTGCTTCCCGTCTTACTGGAAGACCAGCAGCATTTGACAGAGTTGGTCACTCTCTCCTCCTTGGACACCTTTTCTTCACTTGGTTTCCAGAACAGCATTATCTCCTGCTTATTGTCTTCCTCAGTCTACCTCAGTGAAAAGCTTTACTGGTTCCTCCACATCTCCCAGACCTCCAGTAATAACAGGAATGTACCATGCCATTGCTCTCTCTCTCTCCTTTTTTTTTTTTTTTTTTTTTTTTTGTTGAGACAGAGTCTCAATTTTATCACCCAGACTGAAGCACAATGGCATGATCATAGCTCATTGCAGTCTCGAACTCGTGGGCTCAAGCAATCCTCCCACCTCAGCCTCCTGAATAGCTGGGACTACAAGCAACACCACCATGCCCAGCTAACTTTCTATTTTTTATTTTTATTTTTTGTAGAGATGAGGTTTTACTATGTTGCCTAGGCTAGTCTTGAACTCCTGGGCCCAAATGATCCTCCCACCTTGGTCTCCCAAAGTGCTGGGATTATAGGCGTGAGCCACCGTGTCCAACTTCTCTTTCTTAATGGAATTTAGGCAAAAGTTATTACTCATGGCCTTGGAATGCTCTTTCCTCAGATAGCCACATGGCTCACCATTACTTCCTTCCAGCTTTCTTCAAAGATCCACTTCTCAGTGAAGCTTTGTCCTGACCACCCAGCTGAAAATTGCAATCCTCTTCTGTCTACCATGTACATACTCTCTATTTGCTTTCCTTCCTTTATTTCTCTCTGTAGGTGTGACCTAACATAACATATAATTTACTTCTGTACCTTGTTTGCTTTCTGTCTTCCCCTTTAGAACATAAGCTCCATGAGGGAAGGCGTTTTTGCCTGCTTTAGTCACTTTATCTCCAGCAACTACAACTATATGTATATATACACACACATATATATACACACACATATATATACACACACATATATATATACATATATATATATAGTAGGCACTCAATAAACATTCACTGAATGAATGAACAGTAATGCTCACTTGCCCATAAATACAAGTACCTCATCTTTTACCACAAAGGGTATTTGTAAATATTTAGGTTGTTTCTACCCAGATTATGGCTTGGTAATTCTTTTTTTTTTTTTCTAATTTTTATTTTTTTTCTAGGGACAGGGTCTCACTATGTTGCCCAGGATGGTCTTGAACTCCTGGGCTCAAGCATTCTGCCTGCCTTGGCCTCCTAAAGTGCTGAGATTACAGGCATGAGCCACCGTGCCTGCCTTCATGTATGTTTTTAGAACACAGAGAAAATGTGTTCTAAATGTGCTCATTGCTCAGCAATGAGCAAAGGCTTATGCAGTCACCACCAATCAAAAACTTTTTTTTTTTTTTTTGAGACAAGATCTTGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCAGGATCATAGCAAGCTGCAGTCTTGACCTCATAGGCCTAAATCATCCTCCCACCTCAGCCTCACAAGTAGCTAAGACCACAGGTACAAGCCACCGTATCTAGCTAACTTTCAAAATTTTTTGAATTTTTAAATTTAAAAATTTTGAGGCCAGGCTGGCCTCAAACTCCTGAGCTCAAGCAATCCTCCCACCTTGGCTTCCCAAAGTGCTGGGATTATAGGCGTGAGCAACTGTACCTGGCAAAAACTTTTTAAGAGCTTCGCTTCCAGGATTAGGCAACTTTAACCTTCAACAGTGATCATAACCCTTAGTTTTCAGATCCGATTAAGGGAAATGTGTAATGTCTTACTGACACACTAATCCCATCACTGCTCACACCACCCACAATTAGCTGAGAAGAGGTAATTAAAGCTAAATGAAGTTGTAAGAGTGGCCCTATCGCATAGGACTAGTGTCCCTATAAGAACACGAAGAAATCACCTTAGAAAGGCTGAGAAAGGGCTGCAGGGCAGTGGGAGTGCAGACTGAAAGATGCAGACCACTGGGCTTCTACTTCTGTTTCCATTTCTGATCCGGCCTGCATCTGCCTCCTTCCTGAACAGGCCAGAGAATTCATCTAAATAGCCTAAGCAGGCTGGGTGCTGTGGCTCACCTGTAATCCCAACACTTGGGAGGCCGAGGTGGGCAGATCACCTGAGGTCAGGAGTTCAAGGCTAGCCTAGCCAACATGACAAAACCCCATCTCTACTAAAAAAATACAAAAATTAGCCAGGCATAGTGGCGCCTATAGTTCCAGCTACTTGGGGGCTGAGGTAGGAAGATCGCTAGAGCCTGGGAGGTTAAGGCTGCGGTGAGCTGTGATTGTGCCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGCCTCAAAAATAAATAAATAAATAAATAAATAAAAATAAGAGTGCTTGGCAGCTTGATCAAGCTATGCCAGGAACCCATCTCTCAAGCAGCAGCTCTTCTCCTGTGCCATTGTCAGCTTTGTCCTGTCTGAGTCCATGGGACTCTTCTGTTTGATGGTGGTCTTCCTCATCCTCTTCATCATGTGAAGCTCCATGGAGATCACCTACCCATACCTGCTTCTGTGACCTCATGCCATTCCTGGTGTTGGAATGTGCCAAGGTTTGCCATTAAACACACATTTCTCATTTCATAATTTCATATATATTATATATATGTGTGTGTGTGTGTGTTTATATATGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATATATATATATATATATATATATATATATATATATATATAAAATATATAGGAAGAGGCACCAGAGAGCTCTCTGCATAGTCACAGAGGAAAGGTCATGTGAGGACAGCCAGAAGGCAGATGTCACAAGCCTCACCAGCAACCTACCATACCCTGCTTGTACCTCCATCCTGGAAGTCCAGCTTCTAAAATTAGAAGAAAATAGTCGGGTGTGGTGGCTCGCACCTATAATCCCAGCACTTTGGGAGGCTGATGTGGGAGGATCATTTGAGGTCAAGAGTTTGAAACCAGCCTAGGCAACATAGGGAGACCCTGTCTTTAAAAAAAATTTTTTTTTGTTTTAATTAGCTGGGTGTGATGGTGCACACCTGAGTCCTAGCTACTTGGGAGGCTGAGGTAGGAGGATCCCCTGAGCCCAGGGAAGTGGAGGCTGCAGTGAGCCATGATCACACCACTGCAATACAGCCTGGGTGACAGAGCAAGACCTTATCTCAAAATAAACAAACAAACAAAAAAGATGACAAAATAAATGTCTGTCGTTTAAGTCACCCATTCTGTGATATCTTGTTACGGCAGCCTGAACTGACCAATACACTTCCTCACCCAGTTTAAATTCCATGCTCAATCATAATCAGCCATTGCAATTACCCTCAACTGTATTATCAACCCTCAATTTGTATTAGTTGCTTGGCAAAACCCAAACCCTTGTGAAATCCAGTTCTTCTATATCTACATCGATGCTGCCGAATATGGCTGAAGAAAAGCAACTGTGTTGACTGGACTGCTTTAAATTCATGACCACTTACCTCAAGTGGGCACTTAACTTCCTGGCAATTATTCTACATTTTTCTAGTCCATTAACTCTCCTCCTCTCTGAGTTAATTATTTCACAGCTTTTCCTCCCTCTTTATACATGTTCCATCCTAACTCTCTGCTGATGACCTTGTTTCTTATTTCACTAATGGAGGCCACCAGGAGAGAACTCCCACAGCCATCAAATTCACCAAGCCAACAGCATCCTTACACAAATCCTCTGCCTTCTCTCTGGGCTGGCTGTGCCCTCTCTTTGCTCCTGCAATTTCCCTAACTCTCCTATACTGTTGTTATTCACTCTCCAGTGGATAATCACCATCAGGATGCAAAGATGCTGTACTAGCTTCTGAACTCTCCAAAAACCCAGGAAACAAAAAGGCAAAGGCTAAGCTTTTTCTTATTCCCCCTTCCAGCTATTGTACTGTTTCTCTGCTTTTAATTTATTTTTATTTATTTATTTATTTATTTATTTATTTATTTTTGAGATGGAGCTTCACTCTTGTTGCCCAGGCTGGAGCGCAATGGCGCGATCTCAGCTCACCGCAACCTCTACTTCCCGAATTCAAGTGATTGTCCTGCCTCAGCCTCCCGAGTAGCCGGGATTACAGGCATGCGCCACCACGCCTGGCTAATTTTGTACTTTTAGTAGAGACGGGGTTTCTCCATGTTGCTCAGCCTGGTCACAAACTCCCGATCTCAGGTGATCTGCCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCACGCCCCACCGTCTCTGTTCTCTTTTAAAGCACAATCCCTCAACACAAGTGTCTATACTCAGCGTCTCCACTTTCCCTCCATCTGGTCTTCCCAGTGCCCCCTTGTCAGGTTTTCACCCCATGCTCCTCCAGGGCTAGTCTGCTCTTGCTTCCCGTCTTACTGGAAGACCAGCAGCATTTGACAGAGTTGGTCACTCTCTCCTCCTTGGACACCTTTTCTTCACTTGGTTTCCAGAACAGCATTATCTCCTGCTTATTGTCTTCCTCAGTCTACCTCAGTGAAAAGCTTTACTGGTTCCTCCACATCTCCCAGACCTCCAGTAATAACAGGAATGTACCATGCCATTGCTCTCTCTCTCTCCTTTTTTTTTTTTTTTTTTTTTTTTTGTTGAGACAGAGTCTCAATTTTATCACCCAGACTGAAGCACAATGGCATGATCATAGCTCATTGCAGTCTCGAACTCGTGGGCTCAAGCAATCCTCCCACCTCAGCCTCCTGAATAGCTGGGACTACAAGCAACACCACCATGCCCAGCTAACTTTCTATTTTTTATTTTTATTTTTTGTAGAGATGAGGTTTTACTATGTTGCCTAGGCTAGTCTTGAACTCCTGGGCCCAAATGATCCTCCCACCTTGGTCTCCCAAAGTGCTGGGATTATAGGCGTGAGCCACCGTGTCCAACTTCTCTTTCTTAATGGAATTTAGGCAAAAGTTATTACTCATGGCCTTGGAATGCTCTTTCCTCAGATAGCCACATGGCTCACCATTACTTCCTTCCAGCTTTCTTCAAAGATCCACTTCTCAGTGAAGCTTTGTCCTGACCACCCAGCTGAAAATTGCAATCCTCTTCTGTCTACCATGTACATACTCTCTATTTGCTTTCCTTCCTTTATTTCTCTCTGTAGGTGTGACCTAACATAACATATAATTTACTTCTGTACCTTGTTTGCTTTCTGTCTTCCCCTTTAGAACATAAGCTCCATGAGGGAAGGCGTTTTTGCCTGCTTTAGTCACTTTATCTCCAGCAACTACAACTATATGTATATATACACACACATATATATACACACACATATATATACACACACATATATATATACATATATATATATAGTAGGCACTCAATAAACATTCACTGAATGAATGAACAGTAATGCTCACTTGCCCATAAATACAAGTACCTCATCTTTTACCACAAAGGGTATTTGTAAATATTTAGGTTGTTTCTACCCAGATTATGGCTTGGTAATTCTTTTTTTTTTTTTCTAATTTTTATTTTTTTTCTAGGGACAGGGTCTCACTATGTTGCCCAGGATGGTCTTGAACTCCTGGGCTCAAGCATTCTGCCTGCCTTGGCCTCCTAAAGTGCTGAGATTACAGGCATGAGCCACCGTGCCTGCCTTCATGTATGTTTTTAGAACACAGAGAAAATGTGTTCTAAATGTGCTCATTGCTCAGCAATGAGCAAAGGCTTATGCAGTCACCACCAATCAAAAACTTTTTTTTTTTTTTTTGAGACAAGATCTTGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCAGGATCATAGCAAGCTGCAGTCTTGACCTCATAGGCCTAAATCATCCTCCCACCTCAGCCTCACAAGTAGCTAAGACCACAGGTACAAGCCACCGTATCTAGCTAACTTTCAAAATTTTTTGAATTTTTAAATTTAAAAATTTTGAGGCCAGGCTGGCCTCAAACTCCTGAGCTCAAGCAATCCTCCCACCTTGGCTTCCCAAAGTGCTGGGATTATAGGCGTGAGCAACTGTACCTGGCAAAAACTTTTTAAGAGCTTCGCTTCCAGGATTAGGCAACTTTAACCTTCAACAGTGATCATAACCCTTAGTTTTCAGATCCGATTAAGGGAAATGTGTAATGTCTTACTGACACACTAATCCCATCACTGCTCACACCACCCACAATTAGCTGAG

  8. Genes and Signals

  9. Gene Features • Codon frequency/bias • Organism dependent • Hexamer statistics • Transcriptional • Promoters/enhancers • Exon/introns • Length distributions • ORFs • Splicing • Donor/acceptor sites • Branchpoints • Translational • Ribosome binding sites

  10. Codon Bias • Gene Finders are often organism specific • Coding regions often modelled by 5th order Markov chain (hexamers/di-codons)

  11. Exon Size

  12. Intron Size

  13. Intron Prevalence

  14. Gene Finding Challenges • Need the correct reading frame • Introns can interrupt an exon in mid-codon • There is no hard and fast rule for identifying donor and acceptor splice sites • Signals are very weak

  15. Overpredicting Genes • Easy to predict all exons • Report all sequences flanked by ..AG and GT.. as exons • Sensitivity = 100% • Specificity ~ 0%

  16. Sensor-based methods • Similarity searches misses some/many genes • cDNA/EST libraries are not perfect • Ab initio Gene Finders • HMM-based • GenScan • HMMgene • Neural network-based • GRAIL • NetGene2 (splice sites)

  17. Gene Prediction • ”Isolated” methods • Predict individual features • E.g. splice sites, coding regions • NetGene (Neural network) • http://www.cbs.dtu.dk/services/NetGene2/ • ”Integrated” methods • Predict genes in context • ”Grammar” of genes • Certain elements in specific order are required • HMMgene http://www.cbs.dtu.dk/services/HMMgene/ • GenScan (HMM-based) http://genes.mit.edu/GENSCAN.html

  18. Gene Grammar Isolated features HAPPYEUGENEAWASGUYFINDER

  19. Gene Grammar Isolated features HAPPYEUGENEAWASGUYFINDER Intron 3’UTR Exon Promoter Exon RBS

  20. Gene Grammar Integrated features EUGENEFINDERWASAHAPPYGUY HAPPYEUGENEAWASGUYFINDER

  21. Gene Grammar Integrated features EUGENEFINDERWASAHAPPYGUY PromRBSExonIntronExon3’UTR

  22. Gene Grammar ”Isolated” methods (e.g.NN): HAPPYEUGENEAWASGUYFINDER ”Integrated” methods (e.g.HMM): EUGENEFINDERWASAHAPPYGUY

  23. HMMs for genefinding • GenScan principle • E=exon • I=intron • F=5’ UTR • T=3’ UTR • P=promoter • N=intergenic

  24. Genscan http://genes.mit.edu/GENSCAN.html

  25. Genscan

  26. Genscan http://genes.mit.edu/GENSCAN.html

  27. Genscan

  28. Genscan

  29. HMMgene http://www.cbs.dtu.dk/services/HMMgene/

  30. HMMgene http://www.cbs.dtu.dk/services/HMMgene/ • Columns • Sequence identifier • Program name • Prediction (see table below for the meaning). • Beginning • End • Score between 0 and 1 • Strand: $+$ for direct and $-$ for complementary • Frame (for exons it is the position of the donor in the frame) • Group to which prediction belong. If several CDS's are found they will be called cds_1, cds_2, etc. `bestparse:' is there because alternative predictions will also be available (see below). NameMeaning firstex The coding part of the first coding exon starting with the first base of the start codon. exon_N The N'th predicted internal coding exon. lastex The coding part of the last coding exon ending with the last base of the stop codon. singleex The coding part of an exon in a gene with only one coding exon. CDS Coding region composed of the exon predictions prior to this line.

  31. Defining the term ’exon’ • Gene Prediction programs often use • Exon = CDS (coding sequence) • Real exons may contain 5’ or 3’ UTRs (untranslated regions)

  32. Gene Prediction – NetGene 2

  33. Gene Prediction – NetGene 2

  34. Gene Prediction – NetGene 2

  35. Gene Prediction – NetGene 2

  36. NIX – Visualizing Gene Predictions http://www.hgmp.mrc.ac.uk/NIX/

  37. Gene Prediction – Performance of Genscan

  38. Performance of Genscan – Exon Length

  39. Repeatmasker • Repetitive sequences in human/eukaryotic genomes are a problem • Run gene predictions on large genomic regions before and after masking of repetitive sequence: • http://ftp.genome.washington.edu/cgi-bin/RepeatMasker • Up to 45% of human genomic sequence derived from transposable/repetitive elements

  40. Repeatmasker

  41. Future Challenges • Bootstrapping: prediction improves as more genes become known • ’Extreme’ genes (long/short) still difficult • Initial and terminal exons are predicted with lower confidence • Combine with Sequence Similarity Matches • Non-coding RNAs • Most gene prediction programs only predict protein-coding genes • tRNA and rRNA genes are not predicted • Prokaryotic gene finding • Much easier (no introns), but still not perfect • Especially short genes (<300 bp) difficult

  42. Gene Prediction • Take home messages • Human genome sequence is known • Number of human genes is unknown! • Before 2001: est.30,000-140,000 • Anno 2003: 30,000-40,000 • Location, structure and function of many human genes is unknown! • Genes may be discovered by different means and methods • ...

  43. Gene Prediction • Take home messages • Genes may be predicted by computer programs • Masking of repetitive sequences may be required for large genomic sequences • ’Unusual’ genes are difficult (high GC%, short or terminal exons) • HMM-based gene prediction programs are suitable for “Gene Grammar” • Prediction methods are not perfect!

  44. The End

  45. Gene Prediction Exercises I. Gene Finding in Prokaryotic Sequence II. Gene Finding in Eukaryotic Sequence Exercises at: http://www.cbs.dtu.dk/phdcourse/programme.html http://www.cbs.dtu.dk/phdcourse/cookbooks/genefinding/pro.html http://www.cbs.dtu.dk/phdcourse/cookbooks/genefinding/euk.html

  46. Gene Prediction Exercise http://www.cbs.dtu.dk/dtucourse/cookbooks/nikob/exercises/gf_exercise_solution.html

More Related