1 / 19

2014 년 봄학기 강원대학교 컴퓨터과학전공 문양세

이산수학 (Discrete Mathematics)  행렬 (Matrices). 2014 년 봄학기 강원대학교 컴퓨터과학전공 문양세. Introduction. Matrices. A matrix (say MAY-trix) is a rectangular array of objects (usually numbers). ( 행렬 은 수의 사각형 배열이다 .)

urvi
Download Presentation

2014 년 봄학기 강원대학교 컴퓨터과학전공 문양세

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 이산수학(Discrete Mathematics) 행렬 (Matrices) 2014년 봄학기 강원대학교 컴퓨터과학전공 문양세

  2. Introduction Matrices • A matrix (say MAY-trix) is a rectangular array of objects (usually numbers). (행렬은 수의 사각형 배열이다.) • An mn (“m by n”) matrix has exactly m horizontal rows, and n vertical columns. (m개의 행과 n개의 열을 갖는 행렬) • Plural of matrix = matrices • An nn matrix is called a square matrix, whose order is n.(행과 열의 개수가 같은 행렬을 정방행렬이라 한다.) • Tons of applications: • Models within Computational Science & Engineering • Computer Graphics, Image Processing, Network Modeling • Many, many more …

  3. Matrix Equality Matrices Two matrices A and B are equal iff they have the same number of rows, the same number of columns, and all corresponding elements are equal.(두 행렬이 같은 수의 행과 열을 가지며 각 위치의 해당 원소의 값이 같으면 “두 행렬은 같다”고 정의한다.) Example

  4. Row and Column Order (1/2) Matrices The rows in a matrix are usually indexed 1 to m from top to bottom.(행은 위에서 아래로 1~m의 색인 값을 갖는다.) The columns are usually indexed 1 to n from left to right.(열은 왼쪽에서 오른쪽으로 1~n의 색인 값을 갖는다.) Elements are indexed by row, then column.(각 원소는 행 색인, 열 색인의 순으로 표현한다.)

  5. Row and Column Order (2/2) Matrices Let A be mn matrix [ai,j], ith row = 1n matrix [ai,1ai,2 … ai,n], jth column = m1 matrix

  6. Matrix Sums Matrices The sumA+B of two mnmatrices A, B is the mnmatrix given by adding corresponding elements.(A+B는 (i,j)번째 원소로서 ai,j+bi,j를 갖는 행렬이다.) A+B = C = [ci,j] = [ai,j+bi,j] where A = [ai,j] and B = [bi,j] Example

  7. Matrix Products (1/2) Matrices For an mk matrix A and a kn matrix B, the productAB is the mn matrix: I.e., element (i,j) of AB is given by the vector dot product of the ith row of A and the jth column of B (considered as vectors). (AB의 원소 (i,j)는 A의 i번째 열과 B의 j번째 행의 곱이다.)

  8. Matrix Products (2/2) Matrices • Example • Matrix multiplication is not commutative! (교환법칙 성립 안 함) • A = mn matrix, B = rs matrix • AB can be defined when n = r • BA can be defined when s = m • Both AB and BA can be defined when m = n = r = s

  9. (m)· (n)·( (1)+ (k) · (1)) Matrix Multiplication Algorithm Matrices procedurematmul(matrices A: mk, B: kn) fori := 1 tom forj := 1 ton begin ci,j := 0 forq := 1 tok ci,j := ci,j + ai,qbq,j end {C=[ci,j] is the product of A and B} What’s the  of itstime complexity? Answer: (mnk)

  10. Identity Matrices (항등 행렬) Matrices The identity matrix of order n, In, is the order-nmatrix with 1’s along the upper-left to lower-right diagonal and 0’s everywhere else.((i,i)번째 원소가 1이고, 나머지는 모두 0인 행렬) AIn = InA = A

  11. Matrix Inverses (역행렬) Matrices For some (but not all) square matrices A, there exists a unique multiplicative inverseA-1 of A, a matrix such that A-1A = In. (정방 행렬 A에 대해서 하나의 유일한 역행렬 A-1이 존재한다.) If the inverse exists, it is unique, and A-1A = AA-1. A I3 A-1

  12. Matrix Transposition (전치 행렬) Matrices If A=[ai,j] is an mn matrix, the transpose of A (often written At or AT) is the nm matrix given byAt = B = [bi,j] = [aj,i] (1in,1jm) Flipacrossdiagonal

  13. Symmetric Matrices (대칭 행렬) Matrices A square matrix A is symmetric iff A=At.I.e., i,jn: aij = aji . Which is symmetric?

  14. p times Powers of Matrices (멱행렬) Matrices If A is an nn square matrix and p0, then: Ap  AAA···A (A0  In) Example:

  15. Zero-One Matrices (0-1 행렬) Matrices • Useful for representing other structures. • E.g., relations, directed graphs (later in course) • All elements of a zero-one matrix are 0 or 1 • Representing False & True respectively. • The meetof A, B (both mn zero-one matrices):AB : [aijbij] (= [aijbij]) • The joinof A, B: AB : [aijbij]

  16. Boolean Products (부울 곱) (1/2) Matrices • Let A=[aij] be an mk zero-one matrix,& let B=[bij] be a kn zero-one matrix, • The Boolean product of A and B is like normal matrix multiplication, but • using “” instead “+” • using “” instead of “∙” A⊙B

  17. Boolean Products (부울 곱) (2/2) Matrices Example: Algorithm of Boolean Product ⊙ procedureBoolean product(A,B: zero-one matrices) fori := 1 to m for j := 1 to n begin cij:= 0 for q:= 1tok cij := cij (aiq  bqj) end {C = [cij] is the Boolean product of A and B.}

  18. Boolean Powers (부울 거듭제곱) Matrices For a square zero-one matrix A, and any k0,the kth Boolean power of A is simply the Boolean product of k copies of A. (A의 k부울린 거듭제곱) A[k] A⊙A⊙…⊙A, A[0] In Example: k times ⊙ ⊙ ⊙

  19. Homework #4 Matrices

More Related