400 likes | 550 Views
WMAP (2001-). RHIC (2000- ). LATTICE. Bulk and Spectral Observables in Lattice QCD. Tetsuo Hatsuda ( 初田哲男 ) Univ. Tokyo (東京大学). Three Major Tools to study Early Universe. Contents. [1] Introduction -- lattice approach to hot QCD [2] Bulk properties of hot QCD
E N D
WMAP (2001-) RHIC (2000- ) LATTICE Bulk and Spectral Observables in Lattice QCD Tetsuo Hatsuda(初田哲男) Univ. Tokyo (東京大学) Three Major Tools to study Early Universe
Contents [1] Introduction -- lattice approach to hot QCD [2] Bulk properties of hot QCD -- equation of state (precision) -- order of the thermal transition (precision) -- critical temperature (precison) -- critical point at finite density (exploratory) [3] Spectral properties of hot QCD -- heavy probes (exploratory) -- light probes (exploratory) [4] Summary
QGP Asakawa & Yazaki, Nuc. Phys A504 (‘89) 668 cSB CSC mB Yamamoto, Tachibana, Baym & T.H., Phys. Rev. Lett. 97 (2006)122001 Introduction T
Why lattice ? • well defined QM (finite a and L) • gauge invariant • fully non-perturbative What one can do • hadron mass, coupling, form factor etc • scattering (phase shift, potential etc) • hot plasma What one cannot do (at present) • cold plasma • non-equilibrium plasma Lattice QCD
a 1/T L Fermions: staggered, Wilson, Domain-wall, Overlap different way of handling chiral symmetry Improved actions: asqtad, p4, stout, clover … different way of reducing the discretization error Modern algorithms: RHMC, DDHMC … techniques to make the simulations fast and reliable 2+1 flavor, physical quark mass, a 0, L ∞ Lattice thermodynamics Full QCD
To collect 1000 indep. gauge conf. On 243x40, a=0.08 fm lattice (T=0) Clark, hep-lat/0610048.
QCD Cluster @ FNAL PACS-CS @ Tsukuba BlueGene/L @ KEK QCDOC @ RBRC-Columbia ApeNEXT @ Rome
QGP cSB CSC Bulk Properties of Hot QCD
Energy density in full QCD (Nf=2+1) MILC Coll., hep-lat/061001 O(a2) improved action Ns/Nt=2, inexact R-algorithm.
Fluctuation: chiral susceptibility cm/T2 cm/T2 1/T mp=235, 300, 355, 405MeV Wuppertal-Budapest Coll., Nature 443 (2006) Order of the transition in full QCD (Nf=2+1)
n-th order transiton: non-analiticity starts from e.g. 1st order: P smooth, dP/dT=s discontinuous 2nd order: P smooth, dP/dT=s smooth, (d/dT)2P=ds/dT=cV/T divergent crossover: P(K) is everywhere analytic Intrinsic ambiguity to define Tpc cm/T2 Pseudo critical temperature Tpc
[MeV] [MeV] Tpc (a 0) in full QCD (Nf=2+1) from cm/T2 Staggered fermion MILC Coll., hep-lat/0405029 169(12)(4)(5) MeV Asqtad, Nt=4,6,8, Ns/Nt=2, r_1=0.317(7) fm RBC-Bielefeld Coll., hep-lat/0608013 192(7)(4) MeV P4fat3, Nt=4,6 Ns/Nt=2-4, r_0=0.469(7) fm Wuppertal-Budapest Coll., hep-lat/0609068 151(3)(3) MeV + 9 MeV stout, Nt=6,8,10, Ns/Nt=4, F_K scale WHOT-QCD Coll., preliminary 175(4)(2) MeV (Nf=2, Nt=6, Polyakov-loop sus.) clover, Nt=4, 6, Ns/Nt=3-4, m_V scale Wilson fermion
Sommer scales r0=0.469 (7) fm,HPQCD-UKQCD Coll. hep-lat/0507013 from bottomonium mass splitting (Nf=2+1, staggered) r0=0.516 (21) fm, CP-PACS-JLQCD Coll., hep-lat/0610050 from ρ-meson mass (Nf=2+1, Wilson) Tpc on the lattice from chain rule
de Forcrand and Phillipsen, hep-lat/0607017 Nf=2+1, Nt=4, standard staggered QGP cSB CSC Critical point Cf. Asakawa & Yazaki, NPA504 (1989) 668 Klimt, Lutz & Weise, PLB249 (’90) 386
Spectral Properties of Hot QCD Shear viscosity in quenched QCD pz h/s pQCD ΛQCD py px AdS/CFT What are the elementary excitations in the plasma? DeTar’s conjecture Phys.Rev.D32 (1985) 276 T T/Tc Nakamura & Sakai, hep-lat/0510100
5 4 free Matsui & Satz, PLB178 (’86)Miyamura et al., PRL57 (’86) r (GeV-1) 3 r g T/Tc=1.53 0.5fm T/Tc=0.93 2 t (GeV-1) QCD-TARO Coll., Phys. Rev. D63 (’01) Charmonium “wave function”(quenched QCD)
anisotropic lattice, 323 x (96-32) x=4.0, at=0.01 fm, (Ls=1.25fm) isotropic lattice, 483 x(24-12), a=0.04 fm (Ls=1.9 fm) Asakawa & Hatsuda, hep-lat/0308034 Datta, Karsch, Petreczky & Wetzorke, hep-lat/0312034 g g c J/y c hc J/y hc anisotropic lattice, 243 x (160-34) x=4.0, at=0.056 fm, (Ls=1.34 fm) Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017 Charmonium spectra in quenched QCD h
Net dissociation rate may even be smaller in full QCD Hatsuda, hep-ph/0509306 g,u,d hc J/y Hamber-Wu, stout, ξ=6, at=0.025fm, 83 x (16,24,32), mp/mr=0.5 Aarts et al., hep-lat/0610065 Charmonium spectra in full QCD (Nf=2)
g J/Y moving in the plasma in quenched QCD g Datta, Karsch, Wissel, Petreczky & Wetzorke, [hep-lat/0409147] Aarts, Allton, Foley, Hands & Kim, [hep-lat/0610061]
anisotropic lattice, 243 x (160-34) x=4.0, at=0.056 fm, (Ls=1.34 fm) Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017 Bottomonium spectra in quenched QCD quenched, a = 0.02 fm Datta, Jakovac, Karsch & Petreczky, [hep-lat/0603002]
at T/Tc= 1.4 ss-channel mφ(T=0)=1.03 GeV A(ω)/ω2 Light meson spectra in quenched QCD mud << ms~Tc << mc < mb Asakawa, Nakahara & Hatsuda, [hep-lat/0208059]
T High Tc superconductor Chen, Stajic, Tan & Levin, Phys. Rep. (’05) weakly int. q + g plasma viscous fluid 3 pz 10 T c q + g plasma ~ 2T * c T q + g +”extra” plasma ? ΛQCD py perfect fluid T c px Resonance gas f T viscous fluid p Pion gas 0 Hot QCD -- a “paradigm” --
1. Progress in lattice QCD Improved action, Faster algorithm, Faster computer simulations of the REAL world RHIC LATTICE AdS/CFT HTS/BEC Summary 2. Progress in bulk thermodynamics Equation of state, Pseudo-critical temperature, Susceptibilities precision science 3. Progress in spectral analysis elementary excitations in QGP still exploratory 4. Progress in finite density many attempts, no conclusion yet
QGP cSB CSC Scale of each “phase”
T (MeV) Hagedorn regime Yukawa regime
QGP cSB CSC Symmetry of each “phase” (case for small mud with ms=∞)
~ ・ Ginzburg-Landau Potential (3-flavor, chiral limit) Symmetry: Chiral modes: Diquark modes:
Yamamoto, Tachibana, Baym & Hatsuda, hep-ph/0605018 ・ Ginzburg-Landau Potential (3-flavor, chiral limit) = U(1)A breaking terms =
Confining string Heavy bound states R [ V(R) - 2mHL ] a Mass-(spin avaraged 1s) [MeV] Nf= 2, Wilson, 243x40 a= 0.083 fm L= 2 fm mp/mr= 0.704 Nf= 2+1, staggered, 163x48, 203x64, 283x96 a = 0.18, 0.12, 0.086 fm L= 2.8, 2.4, 2.4 fm 1.5fm 0.5fm 1fm R/a MILC Coll., hep-lat/0510072 SESAM Coll., Phys.Rev.D71 (2005) 114513 Examples in full lattice QCD
Relativistic plasma : Inter-particle distance Electric screening Magnetic screening Debye number : 1/g2T 1/gT 1/T “Coulomb” coupling parameter : S. Ichimaru, Rev. Mod. Phys. 54 (’82) 1071 QGP for g << 1 ( T >> 100 GeV )
A. Linde, Phys. Lett. B96 (’80) 289 EOS : μ ν magnetic screening : “Debye” screening : Kraemmer & Rebhan, Rept.Prog.Phys.67 (’04)351 Non-Abelian magnetic problem QCD is non-perturbative even at T = ∞
soft magnetic gluons are always non-perturbative even if g 0 (T ∞) pertubation theory from O(g6) (wm~ g2T)
Karsch, hep-lat/0608003 Wuppertal-Budapest Coll., hep-lat/0510084 stout, Ccond/Cnt correction by hand Ns/Nt=3
Tc in 2-favor lattice QCD Ejiri (’04) Filled:Nt=4, Open:Nt=6 173±8 MeV Small mud
Dynamic probe Static probe Matsui & Satz, PLB178 (’86)Miyamura et al., PRL57 (’86) Gluon matter (quenched QCD) Quark-gluon matter (full QCD) Heavy probes of QGP
r g,u,d,s Singlet free energy in full QCD (Nf=2+1) 163x4, p4fat3 action, mud/ms=0.1 RBC-Bielefeld Coll., hep-lat/0610041
Casimir scaling in full QCD (Nf=2) WHOT-QCD Coll., (Maezawa et al.,) In preparation
Casimir scaling in full QCD (Nf=2) quark - anti-quark channel quark-quark channel WHOT-QCD Coll., (Maezawa et al.,) In preparation