1 / 29

Stats Homework (R) Part 1 of 2

Stats Homework (R) Part 1 of 2. Read section 11 of handbook_statsV13 What is the difference between these two models? g1 = glm(admit ~ ., data= mydata ) g2 = glm(admit ~ ., data= mydata , family=“binomial”) Compute MSE (mean squared error) mean((g1$fitted.values – mydata$admit)^2)

uzuri
Download Presentation

Stats Homework (R) Part 1 of 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stats Homework (R)Part 1 of 2 • Read section 11 of handbook_statsV13 • What is the difference between these two models? • g1 = glm(admit ~ ., data=mydata) • g2 = glm(admit ~ ., data=mydata, family=“binomial”) • Compute MSE (mean squared error) • mean((g1$fitted.values – mydata$admit)^2) • mean((g2$fitted.values – mydata$admit)^2) • Which model is better in terms of MSE

  2. Stats Homework (R)Part 2 of 2 • Consider two loss functions • MSE.loss = function(y, yhat) mean((y - yhat)^2) • log.loss = function(y, yhat) -mean(y * log(yhat) + (1-y) * log(1-yhat)) • Which model (g1 or g2) is better in terms oflog.loss? • Hint: Compare log.loss(mydata$admit, g1$fitted.values) with log.loss(mydata$admit, g2$fitted.values) • Hint: log.loss assumes yhat is a probability between 0 and 1 • What are range(g1$fitted.values) and range(g2$fitted.values)? • Let s = g1$fitted.values > 0 & g1$fitted.values < 1 • What is log.loss(mydata$admit[s], g1$fitted.values[s])? • Let baseline.fit be rep(mean(admit), length(admit)) • How do the two models above compare to this baseline • Compare both g1 and g2 to this baseline using both loss functions

  3. Functions • fact = function(x) if(x < 2) 1 else x*fact(x-1) • fact(5) • fact2 = function(x) gamma(x+1) • fact(5) • fact(1:5) • fact(seq(1,5,0.5))

  4. help(swiss)

  5. What are statistics packages good for? • Plotting • Scatter plots, histograms, boxplots • Visualization • Dendrograms, heatmaps • Modeling • Linear Regression • Logistic Regression • Hypothesis Testing

  6. Objects Data Types Operations All: summary, help, print, cat Numbers: +,*,sqrt Strings: grep, substr, paste Vectors: x = (3:30) x+5 plot(x) mean(x), var(x), median(x) mean((x – mean(x))^2) x[3], x[3:6], x[-1], x[x>20] Matrices: m = matrix(1:100,ncol=10) m+3, m* 3, m %*% m m[3,3], m[1:3,1:3], m[3,], m[m < 10] diag(m), t(m) Data Frames names(swiss) plot(swiss$Education, swiss$Fertility) plot(swiss[,1], swiss[,2]) pairs(swiss) • Numbers: 1, 1.5 • Strings • Functions: • sqrt, help, summary • Vectors: • 3:30 • c(1:5, 25:30) • rnorm(100, 0, 1), rbinom(100, 10, .5) • rep(0,10) • scan( filename, 0) • Matrices • matrix(rep(0,100), ncol=10) • diag(rep(1,10)) • cbind(1:10, 21:30) • rbind(1:10, 21:30) • Data Frames • swiss • read.table (filename, header=T)

  7. plot(swiss$Education, swiss$Fertility)

  8. plot(swiss$Education, swiss$Fertility, col = 3 + (swiss$Catholic > 50))

  9. boxplot(split(swiss$Fertility, swiss$Catholic > 50))

  10. boxplot(split(swiss$Fertility, swiss$Education > median(swiss$Education)))

  11. pairs(swiss)

  12. Correlations > cor(swiss$Fertility, swiss$Catholic) [1] 0.4636847 > cor(swiss$Fertility, swiss$Education) [1] -0.6637889 > round(100*cor(swiss)) Fertility Agriculture Examination Education Catholic Infant.Mortality Fertility 100 35 -65 -66 46 42 Agriculture 35 100 -69 -64 40 -6 Examination -65 -69 100 70 -57 -11 Education -66 -64 70 100 -15 -10 Catholic 46 40 -57 -15 100 18 Infant.Mortality 42 -6 -11 -10 18 100 • Many functions in R are polymorphic: • cor works on vectors as well as matrices

  13. Regression > plot(swiss$Education, swiss$Fertility) > g = glm(swiss$Fertility ~ swiss$Education) > abline(g) > summary(g) Call: glm(formula = swiss$Fertility ~ swiss$Education) Deviance Residuals: Min 1Q Median 3Q Max -17.036 -6.711 -1.011 9.526 19.689 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 79.6101 2.1041 37.836 < 2e-16 *** swiss$Education -0.8624 0.1448 -5.954 3.66e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for gaussian family taken to be 89.22746) Null deviance: 7178.0 on 46 degrees of freedom Residual deviance: 4015.2 on 45 degrees of freedom AIC: 348.42 Number of Fisher Scoring iterations: 2

  14. plot(swiss$Education, swiss$Fertility, type='n’); abline(g)text(swiss$Education, swiss$Fertility, dimnames(swiss)[[1]])

  15. g = glm(Fertility ~ . , data=swiss); summary(g) Call: glm(formula = Fertility ~ ., data = swiss) Deviance Residuals: Min 1Q Median 3Q Max -15.2743 -5.2617 0.5032 4.1198 15.3213 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 66.91518 10.70604 6.250 1.91e-07 *** Agriculture -0.17211 0.07030 -2.448 0.01873 * Examination -0.25801 0.25388 -1.016 0.31546 Education -0.87094 0.18303 -4.758 2.43e-05 *** Catholic 0.10412 0.03526 2.953 0.00519 ** Infant.Mortality 1.07705 0.38172 2.822 0.00734 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for gaussian family taken to be 51.34251) Null deviance: 7178.0 on 46 degrees of freedom Residual deviance: 2105.0 on 41 degrees of freedom AIC: 326.07 Number of Fisher Scoring iterations: 2

  16. http://www.nytimes.com/2009/01/07/technology/business-computing/07program.htmlhttp://www.nytimes.com/2009/01/07/technology/business-computing/07program.html

  17. Plot Example • help(ldeaths) • plot(mdeaths, col="blue", ylab="Deaths", sub="Male (blue), Female (pink)", ylim=range(c(mdeaths, fdeaths))) • lines(fdeaths, lwd=3, col="pink") • abline(v=1970:1980, lty=3) • abline(h=seq(0,3000,1000), lty=3, col="red")

  18. Periodicity • plot(1:length(fdeaths), fdeaths, type='l') • lines((1:length(fdeaths))+12, fdeaths, lty=3)

  19. Type Argument par(mfrow=c(2,2)) plot(fdeaths, type='p', main="points") plot(fdeaths, type='l', main="lines") plot(fdeaths, type='b', main="b") plot(fdeaths, type='o', main="o")

  20. ScatterPlot • plot(as.vector(mdeaths), as.vector(fdeaths)) • g=glm(fdeaths ~ mdeaths) • abline(g) • g$coef (Intercept) mdeaths -45.2598005 0.4050554

  21. Hist & Density • par(mfrow=c(2,1)) • hist(fdeaths/mdeaths, nclass=30) • plot(density(fdeaths/mdeaths))

  22. Data Frames • help(cars) • names(cars) • summary(cars) • plot(cars) • cars2 = cars • cars2$speed2 = cars$speed^2 • cars2$speed3 = cars$speed^3 • summary(cars2) • names(cars2) • plot(cars2) • options(digits=2) • cor(cars2)

  23. Normality par(mfrow=c(2,1)) plot(density(cars$dist/cars$speed)) lines(density(rnorm(1000000, mean(cars$dist/cars$speed), sqrt(var(cars$dist/ cars$speed)))), col="red") qqnorm(cars$dist/cars$speed) abline(mean(cars$dist/cars$speed), sqrt(var(cars$dist/cars$speed)))

  24. Stopping Distance Increases Quickly With Speed • plot(cars$speed, cars$dist/cars$speed) • boxplot(split(cars$dist/cars$speed, round(cars$speed/10)*10))

  25. Quadratic Model of Stopping Distance plot(cars$speed, cars$dist) cars$speed2 = cars$speed^2 g2 = glm(cars$dist ~ cars$speed2) lines(cars$speed, g2$fitted.values)

  26. Bowed Residuals g1 = glm(dist ~ poly(speed, 1), data=cars) g2 = glm(dist ~ poly(speed, 2), data=cars) par(mfrow=c(1,2)) boxplot(split(g1$resid, round(cars$speed/5))); abline(h=0) boxplot(split(g2$resid, round(cars$speed/5))); abline(h=0)

  27. Help, Demo, Example • demo(graphics) • example(plot) • example(lines) • help(cars) • help(WWWusage) • example(abline) • example(text) • example(par) • boxplots • example(boxplot) • help(chickwts) • demo(plotmath) • pairs • example(pairs) • help(quakes) • help(airquality) • help(attitude) • Anorexia • utils::data(anorexia, package="MASS") • pairs(anorexia, col=c("red", "green", "blue")[anorexia$Treat]) • counting • example(table) • example(quantile) • example(hist) • help(faithful)

  28. Randomness • example(rnorm) • example(rbinom) • example(rt) • Normality • example(qqnorm) • Regression • help(cars) • example(glm) • demo(lm.glm)

More Related